Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
- URL: http://arxiv.org/abs/2504.13478v1
- Date: Fri, 18 Apr 2025 05:42:37 GMT
- Title: Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
- Authors: Vivian Lin, Ramneet Kaur, Yahan Yang, Souradeep Dutta, Yiannis Kantaros, Anirban Roy, Susmit Jha, Oleg Sokolsky, Insup Lee,
- Abstract summary: We propose to directly monitor safety in a manner that is itself robust to OOD data.<n>Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning.
- Score: 17.629563106665557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The safety of learning-enabled cyber-physical systems is compromised by the well-known vulnerabilities of deep neural networks to out-of-distribution (OOD) inputs. Existing literature has sought to monitor the safety of such systems by detecting OOD data. However, such approaches have limited utility, as the presence of an OOD input does not necessarily imply the violation of a desired safety property. We instead propose to directly monitor safety in a manner that is itself robust to OOD data. To this end, we predict violations of signal temporal logic safety specifications based on predicted future trajectories. Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning. The former obtains probabilistic prediction guarantees even on OOD data, and the latter prevents overly conservative predictions. We evaluate the efficacy of the proposed approach in two case studies on safety monitoring: 1) predicting collisions of an F1Tenth car with static obstacles, and 2) predicting collisions of a race car with multiple dynamic obstacles. We find that adaptive conformal prediction obtains theoretical guarantees where other uncertainty quantification methods fail to do so. Additionally, combining adaptive conformal prediction and incremental learning for safety monitoring achieves high recall and timeliness while reducing loss in precision. We achieve these results even in OOD settings and outperform alternative methods.
Related papers
- Quantitative Predictive Monitoring and Control for Safe Human-Machine Interaction [16.465501381705774]
unsafe human-machine interaction can lead to catastrophic failures.<n>We propose a novel approach that predicts future states by accounting for the uncertainty of human interaction.<n>We apply the proposed approach to two case studies: Type 1 Diabetes management and semi-autonomous driving.
arXiv Detail & Related papers (2024-12-17T22:46:39Z) - System Safety Monitoring of Learned Components Using Temporal Metric Forecasting [8.76735390039138]
In learning-enabled autonomous systems, safety monitoring of learned components is crucial to ensure their outputs do not lead to system safety violations.
We propose a safety monitoring method based on probabilistic time series forecasting.
We empirically evaluate safety metric and violation prediction accuracy, and inference latency and resource usage of four state-of-the-art models.
arXiv Detail & Related papers (2024-05-21T23:48:26Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
The control barrier function is a useful tool to guarantee safety if we have access to the ground-truth system dynamics.
In practice, we have inaccurate knowledge of the system dynamics, which can lead to unsafe behaviors.
We show the efficacy of this method through experiments on Segway and Quadrotor simulations.
arXiv Detail & Related papers (2021-12-22T20:18:18Z) - Assurance Monitoring of Learning Enabled Cyber-Physical Systems Using
Inductive Conformal Prediction based on Distance Learning [2.66512000865131]
We propose an approach for assurance monitoring of learning-enabled Cyber-Physical Systems.
In order to allow real-time assurance monitoring, the approach employs distance learning to transform high-dimensional inputs into lower size embedding representations.
We demonstrate the approach using three data sets of mobile robot following a wall, speaker recognition, and traffic sign recognition.
arXiv Detail & Related papers (2021-10-07T00:21:45Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
Early warning systems can provide alerts when an unsafe situation is imminent.
To reliably improve safety, these warning systems should have a provable false negative rate.
We present a framework that combines a statistical inference technique known as conformal prediction with a simulator of robot/environment dynamics.
arXiv Detail & Related papers (2021-09-28T23:00:30Z) - Neural Predictive Monitoring under Partial Observability [4.1316328854247155]
We present a learning-based method for predictive monitoring (PM) that produces accurate and reliable reachability predictions despite partial observability (PO)
Our method results in highly accurate reachability predictions and error detection, as well as tight prediction regions with guaranteed coverage.
arXiv Detail & Related papers (2021-08-16T15:08:20Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.