Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
- URL: http://arxiv.org/abs/2504.13582v1
- Date: Fri, 18 Apr 2025 09:34:56 GMT
- Title: Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
- Authors: Zongyuan Chen, Yan Xia, Jiayuan Liu, Jijia Liu, Wenhao Tang, Jiayu Chen, Feng Gao, Longfei Ma, Hongen Liao, Yu Wang, Chao Yu, Boyu Zhang, Fei Xing,
- Abstract summary: We present a soft robotic system designed for surgical applications.<n>We propose a whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion.<n>The proposed method showed strong performance in phantom-based surgical experiments.
- Score: 14.02771001060961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
Related papers
- Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
We present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed.<n>Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs.<n>These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development.
arXiv Detail & Related papers (2025-04-17T12:57:11Z) - Embodied Neuromorphic Control Applied on a 7-DOF Robotic Manipulator [10.642836177302533]
Inverse dynamics is a fundamental robotics problem, which maps from joint space to torque space of robotic systems.<n>We use Spiking Neural Network to leverage continuity of the motion data to improve control accuracy and eliminate tuning parameters.<n>This work advances embodied neuromorphic control by one step forward from proof of concept to applications in complex real-world tasks.
arXiv Detail & Related papers (2025-04-17T07:13:37Z) - A Real-time Anomaly Detection Method for Robots based on a Flexible and Sparse Latent Space [2.0186752447895993]
Deep learning-based models in robotics face challenges due to limited training data and highly noisy signal features.<n>We present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoders model to address these problems.<n>Our model performs inferences within 1 millisecond, ensuring real-time anomaly detection.
arXiv Detail & Related papers (2025-04-15T13:17:14Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.<n>We validate our approach through simulations with various planar soft manipulators.<n>Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Model Predictive Actor-Critic: Accelerating Robot Skill Acquisition with
Deep Reinforcement Learning [42.525696463089794]
Model Predictive Actor-Critic (MoPAC) is a hybrid model-based/model-free method that combines model predictive rollouts with policy optimization as to mitigate model bias.
MoPAC guarantees optimal skill learning up to an approximation error and reduces necessary physical interaction with the environment.
arXiv Detail & Related papers (2021-03-25T13:50:24Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.