Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
- URL: http://arxiv.org/abs/2504.13647v1
- Date: Fri, 18 Apr 2025 11:59:34 GMT
- Title: Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
- Authors: Yushen He, Lei Zhao, Tianchen Deng, Zipeng Fang, Weidong Chen,
- Abstract summary: Service mobile robots are often required to avoid dynamic objects while performing their tasks.<n>We present a lightweight multi-modal framework for 3D object detection and trajectory prediction.<n>Our system integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space.
- Score: 7.415417400188903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
Related papers
- Street Gaussians without 3D Object Tracker [86.62329193275916]
Existing methods rely on labor-intensive manual labeling of object poses to reconstruct dynamic objects in canonical space.<n>We propose a stable object tracking module by leveraging associations from 2D deep trackers within a 3D object fusion strategy.<n>We address inevitable tracking errors by further introducing a motion learning strategy in an implicit feature space that autonomously corrects trajectory errors and recovers missed detections.
arXiv Detail & Related papers (2024-12-07T05:49:42Z) - 3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking [15.330384668966806]
State-of-the-art 3D multi-object tracking (MOT) approaches typically rely on non-learned model-based algorithms such as Kalman Filter.
We propose 3DMOTFormer, a learned geometry-based 3D MOT framework building upon the transformer architecture.
Our approach achieves 71.2% and 68.2% AMOTA on the nuScenes validation and test split, respectively.
arXiv Detail & Related papers (2023-08-12T19:19:58Z) - FocalFormer3D : Focusing on Hard Instance for 3D Object Detection [97.56185033488168]
False negatives (FN) in 3D object detection can lead to potentially dangerous situations in autonomous driving.
In this work, we propose Hard Instance Probing (HIP), a general pipeline that identifies textitFN in a multi-stage manner.
We instantiate this method as FocalFormer3D, a simple yet effective detector that excels at excavating difficult objects.
arXiv Detail & Related papers (2023-08-08T20:06:12Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D
Object Detection [20.161887223481994]
We propose a long-sequence modeling framework, named StreamPETR, for multi-view 3D object detection.
StreamPETR achieves significant performance improvements only with negligible cost, compared to the single-frame baseline.
The lightweight version realizes 45.0% mAP and 31.7 FPS, outperforming the state-of-the-art method (SOLOFusion) by 2.3% mAP and 1.8x faster FPS.
arXiv Detail & Related papers (2023-03-21T15:19:20Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object tracking (MOT) ensures consistency during continuous dynamic detection.
It can be challenging to accurately track the irregular motion of objects for LiDAR-based methods.
We propose a novel camera-LiDAR fusion 3D MOT framework based on the Combined Appearance-Motion Optimization (CAMO-MOT)
arXiv Detail & Related papers (2022-09-06T14:41:38Z) - AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D
Object Detection [17.526914782562528]
We propose AutoAlignV2, a faster and stronger multi-modal 3D detection framework, built on top of AutoAlign.
Our best model reaches 72.4 NDS on nuScenes test leaderboard, achieving new state-of-the-art results.
arXiv Detail & Related papers (2022-07-21T06:17:23Z) - 2nd Place Solution for Waymo Open Dataset Challenge - Real-time 2D
Object Detection [26.086623067939605]
In this report, we introduce a real-time method to detect the 2D objects from images.
We leverage accelerationRT to optimize the inference time of our detection pipeline.
Our framework achieves the latency of 45.8ms/frame on an Nvidia Tesla V100 GPU.
arXiv Detail & Related papers (2021-06-16T11:32:03Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.