Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
- URL: http://arxiv.org/abs/2504.13730v1
- Date: Fri, 18 Apr 2025 14:57:07 GMT
- Title: Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
- Authors: Paul K. Mandal, Cole Leo, Connor Hurley,
- Abstract summary: We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision.<n>Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
Related papers
- Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization [22.58434223222062]
We propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance.
Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations.
We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets.
arXiv Detail & Related papers (2025-04-18T04:35:35Z) - Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo [62.031751556701494]
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints.<n>We develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC)<n>Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language.
arXiv Detail & Related papers (2025-04-17T17:49:40Z) - Context-DPO: Aligning Language Models for Context-Faithfulness [80.62221491884353]
We propose the first alignment method specifically designed to enhance large language models' context-faithfulness.<n>By leveraging faithful and stubborn responses to questions with provided context from ConFiQA, our Context-DPO aligns LLMs through direct preference optimization.<n>Extensive experiments demonstrate that our Context-DPO significantly improves context-faithfulness, achieving 35% to 280% improvements on popular open-source models.
arXiv Detail & Related papers (2024-12-18T04:08:18Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG)
We compute a factuality score that can be thresholded to yield a binary decision.
Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets.
arXiv Detail & Related papers (2024-11-01T20:44:59Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
We investigate how pre-trained Large Language Models can be leveraged to predict in context the dynamics of continuous Markov decision processes.<n>We present proof-of-concept applications in two reinforcement learning settings: model-based policy evaluation and data-augmented off-policy reinforcement learning.
arXiv Detail & Related papers (2024-10-15T15:46:53Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
We introduce a novel framework for controlled generation in large language models (LLMs)
This study investigates LLMs' capabilities to follow open-domain, one-shot constraints and replicate the format of the example answers.
We also develop a dataset collection methodology for supervised fine-tuning that enhances the open-domain format control of LLMs without degrading output quality.
arXiv Detail & Related papers (2024-08-08T11:51:45Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Context-Aware Clustering using Large Language Models [20.971691166166547]
We propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS) for efficient and effective supervised clustering of entity subsets.
This paper introduces a novel approach towards clustering entity subsets using Large Language Models (LLMs) by capturing context via a scalable inter-entity attention mechanism.
arXiv Detail & Related papers (2024-05-02T03:50:31Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
This paper proposes a new framework to enhance the fine-grained image understanding abilities of MLLMs.
We present a new method for constructing the instruction tuning dataset at a low cost by leveraging annotations in existing datasets.
We show that our model exhibits a 5.2% accuracy improvement over Qwen-VL and surpasses the accuracy of Kosmos-2 by 24.7%.
arXiv Detail & Related papers (2023-10-01T05:53:15Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - Robust Testing and Estimation under Manipulation Attacks [32.95545820578349]
We study robust testing and estimation of discrete distributions in the strong contamination model.
We consider both the "centralized setting" and the "distributed setting with information constraints"
arXiv Detail & Related papers (2021-04-21T19:49:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.