Personalized News Recommendation with Multi-granularity Candidate-aware User Modeling
- URL: http://arxiv.org/abs/2504.14130v1
- Date: Sat, 19 Apr 2025 01:14:55 GMT
- Title: Personalized News Recommendation with Multi-granularity Candidate-aware User Modeling
- Authors: Qiang Li, Xinze Lin, Shenghao Lv, Faliang Huang, Xiangju Li,
- Abstract summary: This study proposes a multi-granularity candidate-aware user modeling framework.<n>It consists of two main components: candidate news encoding and user modeling.<n>Experiments on a real-world dataset demonstrated that the proposed model could significantly outperform baseline models.
- Score: 6.0674653824284475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Matching candidate news with user interests is crucial for personalized news recommendations. Most existing methods can represent a user's reading interests through a single profile based on clicked news, which may not fully capture the diversity of user interests. Although some approaches incorporate candidate news or topic information, they remain insufficient because they neglect the multi-granularity relatedness between candidate news and user interests. To address this, this study proposed a multi-granularity candidate-aware user modeling framework that integrated user interest features across various levels of granularity. It consisted of two main components: candidate news encoding and user modeling. A news textual information extractor and a knowledge-enhanced entity information extractor can capture candidate news features, and word-level, entity-level, and news-level candidate-aware mechanisms can provide a comprehensive representation of user interests. Extensive experiments on a real-world dataset demonstrated that the proposed model could significantly outperform baseline models.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - GLoCIM: Global-view Long Chain Interest Modeling for news recommendation [59.3925442282951]
Accurately recommending candidate news articles to users has always been the core challenge of news recommendation system.
Recent efforts have primarily focused on extracting local subgraph information in a global click graph constructed by the clicked news sequence of all users.
We propose a Global-view Long Chain Interests Modeling for news recommendation (GLoCIM), which combines neighbor interest with long chain interest distilled from a global click graph.
arXiv Detail & Related papers (2024-08-01T18:17:25Z) - Personalized Topic Selection Model for Topic-Grounded Dialogue [24.74527189182273]
Current models tend to predict user-uninteresting and contextually irrelevant topics.
We propose a textbfPersonalized topic stextbfElection model for textbfTopic-grounded textbfDialogue, named textbfPETD.
Our proposed method can generate engaging and diverse responses, outperforming state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-04T06:09:49Z) - From Text to Context: An Entailment Approach for News Stakeholder Classification [0.5459032912385802]
This paper introduces an effective approach to classify stakeholder types in news articles.
Our method involves transforming the stakeholder classification problem into a natural language inference task.
Our proposed model showcases efficacy in zero-shot settings, further extending its applicability to diverse news contexts.
arXiv Detail & Related papers (2024-05-14T16:35:21Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - DOR: A Novel Dual-Observation-Based Approach for News Recommendation
Systems [2.7648976108201815]
We propose a novel method to address the problem of news recommendation.
Our approach is based on the idea of dual observation.
By considering both the content of the news and the user's perspective, our approach is able to provide more personalised and accurate recommendations.
arXiv Detail & Related papers (2023-02-02T22:16:53Z) - Modeling Multi-interest News Sequence for News Recommendation [0.6787897491422114]
A session-based news recommender system recommends the next news to a user by modeling the potential interests embedded in a sequence of news read/clicked by her/him in a session.
This paper proposes a multi-interest news sequence (MINS) model for news recommendation.
In MINS, a news based on self-attention is devised on learn an informative embedding for each piece of news, and then a novel parallel interest network is devised to extract the potential multiple interests embedded in the news sequence in preparation for the subsequent next-news recommendations.
arXiv Detail & Related papers (2022-07-15T08:03:37Z) - Why Do We Click: Visual Impression-aware News Recommendation [108.73539346064386]
This work is inspired by the fact that users make their click decisions mostly based on the visual impression they perceive when browsing news.
We propose to capture such visual impression information with visual-semantic modeling for news recommendation.
In addition, we inspect the impression from a global view and take structural information, such as the arrangement of different fields and spatial position of different words on the impression.
arXiv Detail & Related papers (2021-09-26T16:58:14Z) - Like Article, Like Audience: Enforcing Multimodal Correlations for
Disinformation Detection [20.394457328537975]
correlations between user-generated and user-shared content can be leveraged for detecting disinformation in online news articles.
We develop a multimodal learning algorithm for disinformation detection.
arXiv Detail & Related papers (2021-08-31T14:50:16Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
We propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO)
The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article.
We propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator.
arXiv Detail & Related papers (2020-10-12T02:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.