Multispectral airborne laser scanning for tree species classification: a benchmark of machine learning and deep learning algorithms
- URL: http://arxiv.org/abs/2504.14337v1
- Date: Sat, 19 Apr 2025 16:03:49 GMT
- Title: Multispectral airborne laser scanning for tree species classification: a benchmark of machine learning and deep learning algorithms
- Authors: Josef Taher, Eric Hyyppä, Matti Hyyppä, Klaara Salolahti, Xiaowei Yu, Leena Matikainen, Antero Kukko, Matti Lehtomäki, Harri Kaartinen, Sopitta Thurachen, Paula Litkey, Ville Luoma, Markus Holopainen, Gefei Kong, Hongchao Fan, Petri Rönnholm, Antti Polvivaara, Samuli Junttila, Mikko Vastaranta, Stefano Puliti, Rasmus Astrup, Joel Kostensalo, Mari Myllymäki, Maksymilian Kulicki, Krzysztof Stereńczak, Raul de Paula Pires, Ruben Valbuena, Juan Pedro Carbonell-Rivera, Jesús Torralba, Yi-Chen Chen, Lukas Winiwarter, Markus Hollaus, Gottfried Mandlburger, Narges Takhtkeshha, Fabio Remondino, Maciej Lisiewicz, Bartłomiej Kraszewski, Xinlian Liang, Jianchang Chen, Eero Ahokas, Kirsi Karila, Eugeniu Vezeteu, Petri Manninen, Roope Näsi, Heikki Hyyti, Siiri Pyykkönen, Peilun Hu, Juha Hyyppä,
- Abstract summary: Multispectral airborne laser scanning (ALS) has shown promise in automated point cloud processing and tree segmentation.<n>This study addresses these gaps by conducting a benchmark of machine learning and deep learning methods for tree species classification.
- Score: 3.9167717582896793
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Climate-smart and biodiversity-preserving forestry demands precise information on forest resources, extending to the individual tree level. Multispectral airborne laser scanning (ALS) has shown promise in automated point cloud processing and tree segmentation, but challenges remain in identifying rare tree species and leveraging deep learning techniques. This study addresses these gaps by conducting a comprehensive benchmark of machine learning and deep learning methods for tree species classification. For the study, we collected high-density multispectral ALS data (>1000 pts/m$^2$) at three wavelengths using the FGI-developed HeliALS system, complemented by existing Optech Titan data (35 pts/m$^2$), to evaluate the species classification accuracy of various algorithms in a test site located in Southern Finland. Based on 5261 test segments, our findings demonstrate that point-based deep learning methods, particularly a point transformer model, outperformed traditional machine learning and image-based deep learning approaches on high-density multispectral point clouds. For the high-density ALS dataset, a point transformer model provided the best performance reaching an overall (macro-average) accuracy of 87.9% (74.5%) with a training set of 1065 segments and 92.0% (85.1%) with 5000 training segments. The best image-based deep learning method, DetailView, reached an overall (macro-average) accuracy of 84.3% (63.9%), whereas a random forest (RF) classifier achieved an overall (macro-average) accuracy of 83.2% (61.3%). Importantly, the overall classification accuracy of the point transformer model on the HeliALS data increased from 73.0% with no spectral information to 84.7% with single-channel reflectance, and to 87.9% with spectral information of all the three channels.
Related papers
- Hybrid Deepfake Image Detection: A Comprehensive Dataset-Driven Approach Integrating Convolutional and Attention Mechanisms with Frequency Domain Features [0.6700983301090583]
We propose an ensemble-based approach that employs three different neural network architectures for deepfake detection.<n>We empirically demonstrate the effectiveness of these models in grouping real and fake images into cohesive clusters.<n>Our weighted ensemble model achieves an excellent accuracy of 93.23% on the validation dataset of the SP Cup 2025 competition.
arXiv Detail & Related papers (2025-02-15T06:02:11Z) - Multi-modal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds [47.679877727066206]
This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can enhance biodiversity assessment.<n>We introduce the BioVista dataset, comprising 44.378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark.<n>Using deep neural networks (ResNet for orthophotos and PointResNet for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving mean accuracies of 69.4% and 72.8%, respectively.
arXiv Detail & Related papers (2025-01-03T09:42:25Z) - A Novel Adaptive Fine-Tuning Algorithm for Multimodal Models: Self-Optimizing Classification and Selection of High-Quality Datasets in Remote Sensing [46.603157010223505]
We propose an adaptive fine-tuning algorithm for multimodal large models.
We train the model on two 3090 GPU using one-third of the GeoChat multimodal remote sensing dataset.
The model achieved scores of 89.86 and 77.19 on the UCMerced and AID evaluation datasets.
arXiv Detail & Related papers (2024-09-20T09:19:46Z) - Protein sequence classification using natural language processing techniques [3.0846824529023396]
This study employs natural language processing (NLP) techniques on a dataset comprising 75 target protein classes.
We explored various machine learning and deep learning models, including K-Nearest Neighbors (KNN), Multinomial Na"ive Bayes, Logistic Regression, Multi-Layer Perceptron (MLP), Decision Tree, Random Forest, XGBoost, Voting and Stacking classifiers, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and transformer models.
arXiv Detail & Related papers (2024-09-06T13:16:16Z) - Whole-body Detection, Recognition and Identification at Altitude and
Range [57.445372305202405]
We propose an end-to-end system evaluated on diverse datasets.
Our approach involves pre-training the detector on common image datasets and fine-tuning it on BRIAR's complex videos and images.
We conduct thorough evaluations under various conditions, such as different ranges and angles in indoor, outdoor, and aerial scenarios.
arXiv Detail & Related papers (2023-11-09T20:20:23Z) - TreeLearn: A deep learning method for segmenting individual trees from ground-based LiDAR forest point clouds [40.46280139210502]
TreeLearn is a deep learning approach for tree instance segmentation of forest point clouds.<n>TreeLearn is trained on already segmented point clouds in a data-driven manner.<n>We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Classification of Single Tree Decay Stages from Combined Airborne LiDAR
Data and CIR Imagery [1.4589991363650008]
This study, for the first time, automatically categorizing individual trees (Norway spruce) into five decay stages.
Three different Machine Learning methods - 3D point cloud-based deep learning (KPConv), Convolutional Neural Network (CNN), and Random Forest (RF)
All models achieved promising results, reaching overall accuracy (OA) of up to 88.8%, 88.4% and 85.9% for KPConv, CNN and RF, respectively.
arXiv Detail & Related papers (2023-01-04T22:20:16Z) - Low-complexity deep learning frameworks for acoustic scene
classification [64.22762153453175]
We present low-complexity deep learning frameworks for acoustic scene classification (ASC)
The proposed frameworks can be separated into four main steps: Front-end spectrogram extraction, online data augmentation, back-end classification, and late fusion of predicted probabilities.
Our experiments conducted on DCASE 2022 Task 1 Development dataset have fullfiled the requirement of low-complexity and achieved the best classification accuracy of 60.1%.
arXiv Detail & Related papers (2022-06-13T11:41:39Z) - Automated Feature-Specific Tree Species Identification from Natural
Images using Deep Semi-Supervised Learning [0.0]
We present a novel and robust two-fold approach capable of identifying trees in a real-world natural setting.
We leverage unlabelled data through deep semi-supervised learning and demonstrate superior performance to supervised learning.
arXiv Detail & Related papers (2021-10-08T09:25:32Z) - G-DetKD: Towards General Distillation Framework for Object Detectors via
Contrastive and Semantic-guided Feature Imitation [49.421099172544196]
We propose a novel semantic-guided feature imitation technique, which automatically performs soft matching between feature pairs across all pyramid levels.
We also introduce contrastive distillation to effectively capture the information encoded in the relationship between different feature regions.
Our method consistently outperforms the existing detection KD techniques, and works when (1) components in the framework are used separately and in conjunction.
arXiv Detail & Related papers (2021-08-17T07:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.