Efficient Spiking Point Mamba for Point Cloud Analysis
- URL: http://arxiv.org/abs/2504.14371v1
- Date: Sat, 19 Apr 2025 18:14:35 GMT
- Title: Efficient Spiking Point Mamba for Point Cloud Analysis
- Authors: Peixi Wu, Bosong Chai, Menghua Zheng, Wei Li, Zhangchi Hu, Jie Chen, Zheyu Zhang, Hebei Li, Xiaoyan Sun,
- Abstract summary: Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D-temporal features.<n>We propose Spiking Point Mamba (SPM), the first Mamba-based SNN in the 3D domain.
- Score: 7.098060453549459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bio-inspired Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. However, existing 3D SNNs have struggled with long-range dependencies until the recent emergence of Mamba, which offers superior computational efficiency and sequence modeling capability. In this work, we propose Spiking Point Mamba (SPM), the first Mamba-based SNN in the 3D domain. Due to the poor performance of simply transferring Mamba to 3D SNNs, SPM is designed to utilize both the sequence modeling capabilities of Mamba and the temporal feature extraction of SNNs. Specifically, we first introduce Hierarchical Dynamic Encoding (HDE), an improved direct encoding method that effectively introduces dynamic temporal mechanism, thereby facilitating temporal interactions. Then, we propose a Spiking Mamba Block (SMB), which builds upon Mamba while learning inter-time-step features and minimizing information loss caused by spikes. Finally, to further enhance model performance, we adopt an asymmetric SNN-ANN architecture for spike-based pre-training and finetune. Compared with the previous state-of-the-art SNN models, SPM improves OA by +6.2%, +6.1%, and +7.4% on three variants of ScanObjectNN, and boosts instance mIOU by +1.9% on ShapeNetPart. Meanwhile, its energy consumption is at least 3.5x lower than that of its ANN counterpart. The code will be made publicly available.
Related papers
- Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.<n>In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - Efficient 3D Recognition with Event-driven Spike Sparse Convolution [15.20476631850388]
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D-temporal features.<n>We introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space.<n>We propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features.
arXiv Detail & Related papers (2024-12-10T09:55:15Z) - Pose Magic: Efficient and Temporally Consistent Human Pose Estimation with a Hybrid Mamba-GCN Network [40.123744788977525]
We propose a new attention-free hybrid architecture named Hybrid Mamba-GCN (Pose Magic)
By adaptively fusing representations from Mamba and GCN, Pose Magic demonstrates superior capability in learning the underlying 3D structure.
Experiments show that Pose Magic achieves new SOTA results while saving $74.1%$ FLOPs.
arXiv Detail & Related papers (2024-08-06T03:15:18Z) - Mamba-Spike: Enhancing the Mamba Architecture with a Spiking Front-End for Efficient Temporal Data Processing [4.673285689826945]
Mamba-Spike is a novel neuromorphic architecture that integrates a spiking front-end with the Mamba backbone to achieve efficient temporal data processing.
The architecture consistently outperforms state-of-the-art baselines, achieving higher accuracy, lower latency, and improved energy efficiency.
arXiv Detail & Related papers (2024-08-04T14:10:33Z) - Pamba: Enhancing Global Interaction in Point Clouds via State Space Model [37.375866491592305]
We introduce Mamba, an SSM-based architecture, to the point cloud domain and propose Pamba, a novel architecture with strong global modeling capability under linear complexity.
Pamba obtains state-of-the-art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200, S3DIS and nuScenes.
arXiv Detail & Related papers (2024-06-25T10:23:53Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity.
We present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction.
arXiv Detail & Related papers (2024-04-23T12:20:27Z) - Gamba: Marry Gaussian Splatting with Mamba for single view 3D reconstruction [153.52406455209538]
Gamba is an end-to-end 3D reconstruction model from a single-view image.
It completes reconstruction within 0.05 seconds on a single NVIDIA A100 GPU.
arXiv Detail & Related papers (2024-03-27T17:40:14Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
We show that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs)
In particular, we demonstrate that Mamba-based point cloud methods can outperform previous methods based on transformer or multi-layer perceptrons (MLPs)
Point Cloud Mamba surpasses the state-of-the-art (SOTA) point-based method PointNeXt and achieves new SOTA performance on the ScanNN, ModelNet40, ShapeNetPart, and S3DIS datasets.
arXiv Detail & Related papers (2024-03-01T18:59:03Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
We propose PointMamba, transferring the success of Mamba, a recent representative state space model (SSM), from NLP to point cloud analysis tasks.
Unlike traditional Transformers, PointMamba employs a linear complexity algorithm, presenting global modeling capacity while significantly reducing computational costs.
arXiv Detail & Related papers (2024-02-16T14:56:13Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
We consider two biologically plausible structures, the Spiking Neural Network (SNN) and the self-attention mechanism.
We propose a novel Spiking Self Attention (SSA) as well as a powerful framework, named Spiking Transformer (Spikformer)
arXiv Detail & Related papers (2022-09-29T14:16:49Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.