NVSMask3D: Hard Visual Prompting with Camera Pose Interpolation for 3D Open Vocabulary Instance Segmentation
- URL: http://arxiv.org/abs/2504.14638v1
- Date: Sun, 20 Apr 2025 14:39:27 GMT
- Title: NVSMask3D: Hard Visual Prompting with Camera Pose Interpolation for 3D Open Vocabulary Instance Segmentation
- Authors: Junyuan Fang, Zihan Wang, Yejun Zhang, Shuzhe Wang, Iaroslav Melekhov, Juho Kannala,
- Abstract summary: We introduce a novel 3D Gaussian Splatting based hard visual prompting approach to generate diverse viewpoints around target objects.<n>Our method simulates realistic 3D perspectives, effectively augmenting existing hard visual prompts.<n>This training-free strategy integrates seamlessly with prior hard visual prompts, enriching object-descriptive features.
- Score: 14.046423852723615
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision-language models (VLMs) have demonstrated impressive zero-shot transfer capabilities in image-level visual perception tasks. However, they fall short in 3D instance-level segmentation tasks that require accurate localization and recognition of individual objects. To bridge this gap, we introduce a novel 3D Gaussian Splatting based hard visual prompting approach that leverages camera interpolation to generate diverse viewpoints around target objects without any 2D-3D optimization or fine-tuning. Our method simulates realistic 3D perspectives, effectively augmenting existing hard visual prompts by enforcing geometric consistency across viewpoints. This training-free strategy seamlessly integrates with prior hard visual prompts, enriching object-descriptive features and enabling VLMs to achieve more robust and accurate 3D instance segmentation in diverse 3D scenes.
Related papers
- Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness [73.72335146374543]
We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure.
Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks.
arXiv Detail & Related papers (2025-04-02T16:59:55Z) - MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.<n>Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.<n>We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - 3D Scene Graph Guided Vision-Language Pre-training [11.131667398927394]
3D vision-language (VL) reasoning has gained significant attention due to its potential to bridge the 3D physical world with natural language descriptions.<n>Existing approaches typically follow task-specific, highly specialized paradigms.<n>This paper proposes a 3D scene graph-guided vision-language pre-training framework.
arXiv Detail & Related papers (2024-11-27T16:10:44Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.<n>Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.<n>During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
We propose Graph-DETR3D to automatically aggregate multi-view imagery information through graph structure learning (GSL)
Our best model achieves 49.5 NDS on the nuScenes test leaderboard, achieving new state-of-the-art in comparison with various published image-view 3D object detectors.
arXiv Detail & Related papers (2022-04-25T12:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.