AI for the Open-World: the Learning Principles
- URL: http://arxiv.org/abs/2504.14751v1
- Date: Sun, 20 Apr 2025 22:22:00 GMT
- Title: AI for the Open-World: the Learning Principles
- Authors: Jianyu Zhang,
- Abstract summary: This thesis explores necessary learning principles required to construct AI for the open-world.<n>It proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
- Score: 4.357691364971652
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
Related papers
- Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
This paper aims to provide a comprehensive introduction to the emerging open-world machine learning paradigm.
It aims to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
arXiv Detail & Related papers (2024-03-04T06:25:26Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
General-Purpose Artificial Intelligence Systems (GPAIS) has been defined to refer to these AI systems.
To date, the possibility of an Artificial General Intelligence, powerful enough to perform any intellectual task as if it were human, or even improve it, has remained an aspiration, fiction, and considered a risk for our society.
This work discusses existing definitions for GPAIS and proposes a new definition that allows for a gradual differentiation among types of GPAIS according to their properties and limitations.
arXiv Detail & Related papers (2023-07-26T16:35:48Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with
Millions of APIs [71.7495056818522]
We introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion.
We will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next.
arXiv Detail & Related papers (2023-03-29T03:30:38Z) - Mastering Diverse Domains through World Models [43.382115013586535]
We present DreamerV3, a general algorithm that outperforms specialized methods across over 150 diverse tasks, with a single configuration.
Dreamer is the first algorithm to collect diamonds in Minecraft from scratch without human data or curricula.
arXiv Detail & Related papers (2023-01-10T18:12:16Z) - Impossibility of Collective Intelligence [10.107996426462604]
We show that it is theoretically impossible to design a rational learning algorithm that has the ability to learn across heterogeneous environments.
The only feasible algorithm compatible with all of the axioms is the standard empirical risk minimization.
Our impossibility result reveals informational incomparability between environments as one of the foremost obstacles for researchers.
arXiv Detail & Related papers (2022-06-05T07:58:39Z) - Divide & Conquer Imitation Learning [75.31752559017978]
Imitation Learning can be a powerful approach to bootstrap the learning process.
We present a novel algorithm designed to imitate complex robotic tasks from the states of an expert trajectory.
We show that our method imitates a non-holonomic navigation task and scales to a complex simulated robotic manipulation task with very high sample efficiency.
arXiv Detail & Related papers (2022-04-15T09:56:50Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.