MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
- URL: http://arxiv.org/abs/2504.14960v2
- Date: Wed, 23 Apr 2025 05:44:18 GMT
- Title: MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
- Authors: Dennis Liu, Zijie Yan, Xin Yao, Tong Liu, Vijay Korthikanti, Evan Wu, Shiqing Fan, Gao Deng, Hongxiao Bai, Jianbin Chang, Ashwath Aithal, Michael Andersch, Mohammad Shoeybi, Jiajie Yao, Chandler Zhou, David Wu, Xipeng Li, June Yang,
- Abstract summary: We introduce an end-to-end training framework for large-scale MoE models.<n>MoE Parallel Folding is a novel strategy that decouples the parallelization of attention and MoE in Transformer models.<n>A flexible token-level dispatcher supports both token-dropping and token-dropless MoE training.
- Score: 11.40633051522406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
Related papers
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
atom is a resilient distributed training framework designed for asynchronous training of vast models in a decentralized setting.
atom aims to accommodate a complete LLM on one host (peer) through seamlessly model swapping and concurrently trains multiple copies across various peers to optimize training throughput.
Our experiments using different GPT-3 model configurations reveal that, in scenarios with suboptimal network connections, atom can enhance training efficiency up to $20 times$ when juxtaposed with the state-of-the-art decentralized pipeline parallelism approaches.
arXiv Detail & Related papers (2024-03-15T17:43:43Z) - Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [91.9372563527801]
Existing MoE models suffer from tremendous inner-node and inter-node communication overhead.
We propose a novel MoE architecture called Pipeline MoE (PPMoE) to tackle them.
PPMoE builds expert parallel incorporating with tensor parallel and replaces communication-intensive all-to-all dispatching and gathering.
arXiv Detail & Related papers (2023-04-22T14:09:14Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - Does compressing activations help model parallel training? [64.59298055364336]
We present the first empirical study on the effectiveness of compression methods for model parallelism.
We implement and evaluate three common classes of compression algorithms.
We evaluate these methods across more than 160 settings and 8 popular datasets.
arXiv Detail & Related papers (2023-01-06T18:58:09Z) - Merak: An Efficient Distributed DNN Training Framework with Automated 3D
Parallelism for Giant Foundation Models [14.903847751841221]
We propose Merak, an automated 3D parallelism deep learning training framework with high resource utilization.
Merak automatically deploys with an automatic model partitioner, which uses a graph sharding algorithm on a proxy representation of the model.
Merak can speedup the training performance over the state-of-the-art 3D parallelism frameworks of models with 1.5, 2.5, 8.3, and 20 billion parameters by up to 1.42X, 1.39X, 1.43X, and 1.61X, respectively.
arXiv Detail & Related papers (2022-06-10T09:15:48Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
System supports parallel training methods such as data, pipeline, tensor, and sequence parallelism.
arXiv Detail & Related papers (2021-10-28T04:45:55Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipe is a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models.
We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster.
arXiv Detail & Related papers (2021-02-16T07:34:32Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.