Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation
- URL: http://arxiv.org/abs/2504.15085v1
- Date: Mon, 21 Apr 2025 13:18:54 GMT
- Title: Hierarchical Attention Fusion of Visual and Textual Representations for Cross-Domain Sequential Recommendation
- Authors: Wangyu Wu, Zhenhong Chen, Siqi Song, Xianglin Qiua, Xiaowei Huang, Fei Ma, Jimin Xiao,
- Abstract summary: Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains.<n>We propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling.<n>A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration.
- Score: 19.654959889052638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
Related papers
- Image Fusion for Cross-Domain Sequential Recommendation [20.37668418178215]
Cross-Domain Sequential Recommendation aims to predict future user interactions based on historical interactions across multiple domains.<n>Key challenge in CDSR is effectively capturing cross-domain user preferences by fully leveraging both intra-sequence and inter-sequence item interactions.<n>We propose a novel method, Image Fusion for Cross-Domain Sequential Recommendation (IFCDSR), which incorporates item image information to better capture visual preferences.
arXiv Detail & Related papers (2024-12-31T02:44:38Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Information Maximization via Variational Autoencoders for Cross-Domain Recommendation [26.099908029810756]
We introduce a new CDSR framework named Information Maximization Variational Autoencoder (textbftextttIM-VAE)
Here, we suggest using a Pseudo-Sequence Generator to enhance the user's interaction history input for downstream fine-grained CDSR models.
To the best of our knowledge, this paper is the first CDSR work that considers the information disentanglement and denoising of pseudo-sequences in the open-world recommendation scenario.
arXiv Detail & Related papers (2024-05-31T09:07:03Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - FedDCSR: Federated Cross-domain Sequential Recommendation via
Disentangled Representation Learning [17.497009723665116]
We propose FedDCSR, a novel cross-domain sequential recommendation framework via disentangled representation learning.
We introduce an approach called inter-intra domain sequence representation disentanglement (SRD) to disentangle user sequence features into domain-shared and domain-exclusive features.
In addition, we design an intra domain contrastive infomax (CIM) strategy to learn richer domain-exclusive features of users by performing data augmentation on user sequences.
arXiv Detail & Related papers (2023-09-15T14:23:20Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer.
We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec.
We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-12T19:51:32Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Variational Interaction Information Maximization for Cross-domain
Disentanglement [34.08140408283391]
Cross-domain disentanglement is the problem of learning representations partitioned into domain-invariant and domain-specific representations.
We cast the simultaneous learning of domain-invariant and domain-specific representations as a joint objective of multiple information constraints.
We show that our model achieves the state-of-the-art performance in the zero-shot sketch based image retrieval task.
arXiv Detail & Related papers (2020-12-08T07:11:35Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.