A Deep Learning Framework for Sequence Mining with Bidirectional LSTM and Multi-Scale Attention
- URL: http://arxiv.org/abs/2504.15223v1
- Date: Mon, 21 Apr 2025 16:53:02 GMT
- Title: A Deep Learning Framework for Sequence Mining with Bidirectional LSTM and Multi-Scale Attention
- Authors: Tao Yang, Yu Cheng, Yaokun Ren, Yujia Lou, Minggu Wei, Honghui Xin,
- Abstract summary: This paper addresses the challenges of mining latent patterns and modeling contextual dependencies in complex sequence data.<n>A sequence pattern mining algorithm is proposed by integrating Bidirectional Long Short-Term Memory (BiLSTM) with a multi-scale attention mechanism.<n>BiLSTM captures both forward and backward dependencies in sequences, enhancing the model's ability to perceive global contextual structures.
- Score: 11.999319439383918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenges of mining latent patterns and modeling contextual dependencies in complex sequence data. A sequence pattern mining algorithm is proposed by integrating Bidirectional Long Short-Term Memory (BiLSTM) with a multi-scale attention mechanism. The BiLSTM captures both forward and backward dependencies in sequences, enhancing the model's ability to perceive global contextual structures. At the same time, the multi-scale attention module assigns adaptive weights to key feature regions under different window sizes. This improves the model's responsiveness to both local and global important information. Extensive experiments are conducted on a publicly available multivariate time series dataset. The proposed model is compared with several mainstream sequence modeling methods. Results show that it outperforms existing models in terms of accuracy, precision, and recall. This confirms the effectiveness and robustness of the proposed architecture in complex pattern recognition tasks. Further ablation studies and sensitivity analyses are carried out to investigate the effects of attention scale and input sequence length on model performance. These results provide empirical support for structural optimization of the model.
Related papers
- Unlocking the Secrets of Linear Complexity Sequence Model from A Unified Perspective [26.479602180023125]
The Linear Complexity Sequence Model (LCSM) unites various sequence modeling techniques with linear complexity.
We segment the modeling processes of these models into three distinct stages: Expand, Oscillation, and Shrink.
We perform experiments to analyze the impact of different stage settings on language modeling and retrieval tasks.
arXiv Detail & Related papers (2024-05-27T17:38:55Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Enhancing Automatic Modulation Recognition through Robust Global Feature
Extraction [12.868218616042292]
Modulated signals exhibit long temporal dependencies.
Human experts analyze patterns in constellation diagrams to classify modulation schemes.
Classical convolutional-based networks excel at extracting local features but struggle to capture global relationships.
arXiv Detail & Related papers (2024-01-02T06:31:24Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
We propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection.
We show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements.
arXiv Detail & Related papers (2021-05-18T09:50:00Z) - Better Feature Integration for Named Entity Recognition [30.676768644145]
We propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM)
The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters.
arXiv Detail & Related papers (2021-04-12T09:55:06Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.