Collaborative Learning of On-Device Small Model and Cloud-Based Large Model: Advances and Future Directions
- URL: http://arxiv.org/abs/2504.15300v1
- Date: Thu, 17 Apr 2025 06:41:30 GMT
- Title: Collaborative Learning of On-Device Small Model and Cloud-Based Large Model: Advances and Future Directions
- Authors: Chaoyue Niu, Yucheng Ding, Junhui Lu, Zhengxiang Huang, Hang Zeng, Yutong Dai, Xuezhen Tu, Chengfei Lv, Fan Wu, Guihai Chen,
- Abstract summary: The conventional cloud-based large model learning framework is increasingly constrained by latency, cost, personalization, and privacy concerns.<n>In this survey, we explore an emerging paradigm: collaborative learning between on-device small model and cloud-based large model.<n>We provide a comprehensive review across hardware, system, algorithm, and application layers.
- Score: 25.63011347692335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conventional cloud-based large model learning framework is increasingly constrained by latency, cost, personalization, and privacy concerns. In this survey, we explore an emerging paradigm: collaborative learning between on-device small model and cloud-based large model, which promises low-latency, cost-efficient, and personalized intelligent services while preserving user privacy. We provide a comprehensive review across hardware, system, algorithm, and application layers. At each layer, we summarize key problems and recent advances from both academia and industry. In particular, we categorize collaboration algorithms into data-based, feature-based, and parameter-based frameworks. We also review publicly available datasets and evaluation metrics with user-level or device-level consideration tailored to collaborative learning settings. We further highlight real-world deployments, ranging from recommender systems and mobile livestreaming to personal intelligent assistants. We finally point out open research directions to guide future development in this rapidly evolving field.
Related papers
- Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence [0.09208007322096533]
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning.
This survey provides a concise yet comprehensive overview of Federated Learning.
arXiv Detail & Related papers (2025-04-24T16:10:29Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Privacy-Preserving Serverless Edge Learning with Decentralized Small
Data [13.254530176359182]
Distributed training strategies have recently become a promising approach to ensure data privacy when training deep models.
This paper extends conventional serverless platforms with serverless edge learning architectures and provides an efficient distributed training framework from the networking perspective.
arXiv Detail & Related papers (2021-11-29T21:04:49Z) - INTERN: A New Learning Paradigm Towards General Vision [117.3343347061931]
We develop a new learning paradigm named INTERN.
By learning with supervisory signals from multiple sources in multiple stages, the model being trained will develop strong generalizability.
In most cases, our models, adapted with only 10% of the training data in the target domain, outperform the counterparts trained with the full set of data.
arXiv Detail & Related papers (2021-11-16T18:42:50Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Device-Cloud Collaborative Learning for Recommendation [50.01289274123047]
We propose a novel MetaPatch learning approach on the device side to efficiently achieve "thousands of people with thousands of models" given a centralized cloud model.
With billions of updated personalized device models, we propose a "model-over-models" distillation algorithm, namely MoMoDistill, to update the centralized cloud model.
arXiv Detail & Related papers (2021-04-14T05:06:59Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.