HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning
- URL: http://arxiv.org/abs/2504.15323v1
- Date: Mon, 21 Apr 2025 03:04:38 GMT
- Title: HyperFlow: Gradient-Free Emulation of Few-Shot Fine-Tuning
- Authors: Donggyun Kim, Chanwoo Kim, Seunghoon Hong,
- Abstract summary: We propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation.<n>Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift.<n>The adaptation then reduces to a simple numerical integration, which requires only a few forward passes of the auxiliary network.
- Score: 20.308785668386424
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While test-time fine-tuning is beneficial in few-shot learning, the need for multiple backpropagation steps can be prohibitively expensive in real-time or low-resource scenarios. To address this limitation, we propose an approach that emulates gradient descent without computing gradients, enabling efficient test-time adaptation. Specifically, we formulate gradient descent as an Euler discretization of an ordinary differential equation (ODE) and train an auxiliary network to predict the task-conditional drift using only the few-shot support set. The adaptation then reduces to a simple numerical integration (e.g., via the Euler method), which requires only a few forward passes of the auxiliary network -- no gradients or forward passes of the target model are needed. In experiments on cross-domain few-shot classification using the Meta-Dataset and CDFSL benchmarks, our method significantly improves out-of-domain performance over the non-fine-tuned baseline while incurring only 6\% of the memory cost and 0.02\% of the computation time of standard fine-tuning, thus establishing a practical middle ground between direct transfer and fully fine-tuned approaches.
Related papers
- Posterior Approximation using Stochastic Gradient Ascent with Adaptive Stepsize [24.464140786923476]
posterior approximation allow nonparametrics such as Dirichlet process mixture to scale up to larger dataset at fractional cost.<n> gradient ascent is a modern approach to machine learning and is widely deployed in the training of deep neural networks.<n>In this work, we explore using gradient ascent as a fast algorithm for the posterior approximation of Dirichlet process mixture.
arXiv Detail & Related papers (2024-12-12T05:33:23Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Self-Tuning Hamiltonian Monte Carlo for Accelerated Sampling [12.163119957680802]
Hamiltonian Monte Carlo simulations crucially depend on the integration timestep and the number of integration steps.
We present an adaptive general-purpose framework to automatically tune such parameters.
We show that a good correspondence between loss and autocorrelation time can be established.
arXiv Detail & Related papers (2023-09-24T09:35:25Z) - Aiming towards the minimizers: fast convergence of SGD for
overparametrized problems [25.077446336619378]
We propose a regularity regime which endows the gradient method with the same worst-case complexity as the gradient method.
All existing guarantees require the gradient method to take small steps, thereby resulting in a much slower linear rate of convergence.
We demonstrate that our condition holds when training sufficiently wide feedforward neural networks with a linear output layer.
arXiv Detail & Related papers (2023-06-05T05:21:01Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Efficient Neural Network Training via Forward and Backward Propagation
Sparsification [26.301103403328312]
We propose an efficient sparse training method with completely sparse forward and backward passes.
Our algorithm is much more effective in accelerating the training process, up to an order of magnitude faster.
arXiv Detail & Related papers (2021-11-10T13:49:47Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Resolving learning rates adaptively by locating Stochastic Non-Negative
Associated Gradient Projection Points using line searches [0.0]
Learning rates in neural network training are currently determined a priori to training using expensive manual or automated tuning.
This study proposes gradient-only line searches to resolve the learning rate for neural network training algorithms.
arXiv Detail & Related papers (2020-01-15T03:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.