Tell Me What You Know About Sexism: Expert-LLM Interaction Strategies and Co-Created Definitions for Zero-Shot Sexism Detection
- URL: http://arxiv.org/abs/2504.15392v1
- Date: Mon, 21 Apr 2025 18:59:18 GMT
- Title: Tell Me What You Know About Sexism: Expert-LLM Interaction Strategies and Co-Created Definitions for Zero-Shot Sexism Detection
- Authors: Myrthe Reuver, Indira Sen, Matteo Melis, Gabriella Lapesa,
- Abstract summary: This paper investigates hybrid intelligence and collaboration between researchers of sexism and Large Language Models (LLMs)<n>Nine sexism researchers answer questions about their knowledge of sexism and of LLMs.<n>They then participate in two interactive experiments involving an LLM.<n>The second experiment tasks them with creating three different definitions of sexism.
- Score: 10.195336733879431
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates hybrid intelligence and collaboration between researchers of sexism and Large Language Models (LLMs), with a four-component pipeline. First, nine sexism researchers answer questions about their knowledge of sexism and of LLMs. They then participate in two interactive experiments involving an LLM (GPT3.5). The first experiment has experts assessing the model's knowledge about sexism and suitability for use in research. The second experiment tasks them with creating three different definitions of sexism: an expert-written definition, an LLM-written one, and a co-created definition. Lastly, zero-shot classification experiments use the three definitions from each expert in a prompt template for sexism detection, evaluating GPT4o on 2.500 texts sampled from five sexism benchmarks. We then analyze the resulting 67.500 classification decisions. The LLM interactions lead to longer and more complex definitions of sexism. Expert-written definitions on average perform poorly compared to LLM-generated definitions. However, some experts do improve classification performance with their co-created definitions of sexism, also experts who are inexperienced in using LLMs.
Related papers
- MuSeD: A Multimodal Spanish Dataset for Sexism Detection in Social Media Videos [12.555579923843641]
We introduce MuSeD, a new Multimodal Spanish dataset for Sexism Detection consisting of $approx$ 11 hours of videos extracted from TikTok and BitChute.
We find that visual information plays a key role in labeling sexist content for both humans and models.
arXiv Detail & Related papers (2025-04-15T13:16:46Z) - Adaptable Moral Stances of Large Language Models on Sexist Content: Implications for Society and Gender Discourse [17.084339235658085]
We show that all eight models produce comprehensible and contextually relevant text.
Based on our observations, we caution against the potential misuse of LLMs to justify sexist language.
arXiv Detail & Related papers (2024-09-30T19:27:04Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Bilingual Sexism Classification: Fine-Tuned XLM-RoBERTa and GPT-3.5 Few-Shot Learning [0.7874708385247352]
This study aims to improve sexism identification in bilingual contexts (English and Spanish) by leveraging natural language processing models.<n>We fine-tuned the XLM-RoBERTa model and separately used GPT-3.5 with few-shot learning prompts to classify sexist content.
arXiv Detail & Related papers (2024-06-11T14:15:33Z) - White Men Lead, Black Women Help? Benchmarking Language Agency Social Biases in LLMs [58.27353205269664]
Social biases can manifest in language agency.
We introduce the novel Language Agency Bias Evaluation benchmark.
We unveil language agency social biases in 3 recent Large Language Model (LLM)-generated content.
arXiv Detail & Related papers (2024-04-16T12:27:54Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
Large Language Models (LLMs) can generate biased responses.
We propose an indirect probing framework based on conditional generation.
We explore three distinct strategies to disclose explicit and implicit gender bias in LLMs.
arXiv Detail & Related papers (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
Large Language Models (LLMs) can generate biased and toxic responses.
We propose a conditional text generation mechanism without the need for predefined gender phrases and stereotypes.
arXiv Detail & Related papers (2023-11-01T05:31:46Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content.
This paper critically examines gender biases in LLM-generated reference letters.
arXiv Detail & Related papers (2023-10-13T16:12:57Z) - SemEval-2023 Task 10: Explainable Detection of Online Sexism [5.542286527528687]
We introduce SemEval Task 10 on the Explainable Detection of Online Sexism (EDOS)
We make three main contributions: i) a novel hierarchical taxonomy of sexist content, which includes granular vectors of sexism to aid explainability; ii) a new dataset of 20,000 social media comments with fine-grained labels, along with larger unlabelled datasets for model adaptation; andiii) baseline models as well as an analysis of the methods, results and errors for participant submissions to our task.
arXiv Detail & Related papers (2023-03-07T20:28:39Z) - "Call me sexist, but...": Revisiting Sexism Detection Using
Psychological Scales and Adversarial Samples [2.029924828197095]
We outline the different dimensions of sexism by grounding them in their implementation in psychological scales.
From the scales, we derive a codebook for sexism in social media, which we use to annotate existing and novel datasets.
Results indicate that current machine learning models pick up on a very narrow set of linguistic markers of sexism and do not generalize well to out-of-domain examples.
arXiv Detail & Related papers (2020-04-27T13:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.