Speculative Sampling via Exponential Races
- URL: http://arxiv.org/abs/2504.15475v1
- Date: Mon, 21 Apr 2025 23:02:08 GMT
- Title: Speculative Sampling via Exponential Races
- Authors: Szymon Kobus, Deniz Gündüz,
- Abstract summary: Speculative decoding accelerates large language model inference using a smaller draft model.<n>We propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
- Score: 46.8257865686349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speculative decoding accelerates large language model inference using a smaller draft model. In this paper, we establish a surprising connection between speculative decoding and channel simulation, which aims at simulating a noisy channel using as few bits as possible. This connection allows us to provide an information-theoretic analysis of the speed up that can be achieved by speculative decoding. Leveraging this link, we derive an explicit relation between generation speed-up and the number of tokens $k$ generated by the draft model for large $k$, which serves as an upper bound for all $k$. We also propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
Related papers
- AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration [0.3626013617212667]
We introduce AMUSD (Asynchronous Multi-device Speculative Decoding), a system that accelerates generation by decoupling the draft and verify phases.
Unlike conventional speculative decoding, where only one model (draft or verify) performs token generation at a time, AMUSD enables both models to perform predictions independently on separate devices.
We evaluate our approach over multiple datasets and show that AMUSD achieves an average 29% improvement over speculative decoding and up to 1.96$times$ speedup over conventional autoregressive decoding.
arXiv Detail & Related papers (2024-10-22T19:15:35Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding.<n> LANTERN increases speed-ups by $mathbf1.75times$ and $mathbf1.82times$, as compared to greedy decoding and random sampling.
arXiv Detail & Related papers (2024-10-04T12:21:03Z) - Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion [55.0194604505437]
Speculative decoding has emerged as a widely adopted method to accelerate large language model inference.<n>This paper proposes an adaptation of speculative decoding which uses discrete diffusion models to generate draft sequences.
arXiv Detail & Related papers (2024-08-10T21:24:25Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST) is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources.
NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks.
In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
arXiv Detail & Related papers (2024-05-29T17:55:03Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - Ouroboros: Generating Longer Drafts Phrase by Phrase for Faster Speculative Decoding [65.94521678103237]
Speculative decoding is a widely used method that accelerates the generation process of large language models.
We introduce Ouroboros, which can generate draft phrases to parallelize the drafting process.
Ouroboros can achieve speedups of up to $2.8times$ over speculative decoding and $3.9times$ over vanilla decoding.
arXiv Detail & Related papers (2024-02-21T11:31:28Z) - Decoding Speculative Decoding [4.56754610152086]
Speculative Decoding is a technique to speed up inference for Large Language Models without sacrificing quality.<n>We study over 350 experiments with LLaMA-65B and OPT-66B using speculative decoding.<n>Our newly designed draft model can provide 111% higher throughput than existing draft models.
arXiv Detail & Related papers (2024-02-02T16:15:24Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming.
One way to speed them up is speculative decoding, which generates candidate segments from a fast draft model that is then verified in parallel by the target model.
This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification.
We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model.
arXiv Detail & Related papers (2024-01-12T17:15:23Z) - Speculative Contrastive Decoding [55.378200871224074]
Large language models(LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias.
Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding(SCD), a straightforward yet powerful decoding approach.
arXiv Detail & Related papers (2023-11-15T14:15:30Z) - SpecTr: Fast Speculative Decoding via Optimal Transport [30.18181671899423]
We develop a new autoregressive sampling algorithm called $textitSpecTr$, which provides speedup in decoding while ensuring that there is no quality degradation in the decoded output.
We experimentally demonstrate that for state-of-the-art large language models, the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.
arXiv Detail & Related papers (2023-10-23T17:47:34Z) - Accelerating Large Language Model Decoding with Speculative Sampling [9.851546623666588]
speculative sampling is an algorithm for accelerating transformer decoding by enabling the generation of multiple tokens from each transformer call.
We benchmark speculative sampling with Chinchilla, a 70 billion parameter language model, achieving a 2-2.5x decoding speedup in a distributed setup.
arXiv Detail & Related papers (2023-02-02T18:44:11Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
We propose Speculative Decoding (SpecDec) to study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding.
SpecDec has two innovations: Spec-Drafter -- an independent model specially optimized for efficient drafting, and Spec-Verification -- a reliable method for verifying the drafted tokens efficiently.
arXiv Detail & Related papers (2022-03-30T17:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.