From Reviews to Dialogues: Active Synthesis for Zero-Shot LLM-based Conversational Recommender System
- URL: http://arxiv.org/abs/2504.15476v1
- Date: Mon, 21 Apr 2025 23:05:47 GMT
- Title: From Reviews to Dialogues: Active Synthesis for Zero-Shot LLM-based Conversational Recommender System
- Authors: Rohan Surana, Junda Wu, Zhouhang Xie, Yu Xia, Harald Steck, Dawen Liang, Nathan Kallus, Julian McAuley,
- Abstract summary: Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities.<n>Practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints.<n>We propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques.
- Score: 49.57258257916805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational recommender systems (CRS) typically require extensive domain-specific conversational datasets, yet high costs, privacy concerns, and data-collection challenges severely limit their availability. Although Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities, practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints, especially in sensitive or rapidly evolving domains. However, training these smaller models effectively still demands substantial domain-specific conversational data, which remains challenging to obtain. To address these limitations, we propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques. Specifically, our method utilizes publicly available non-conversational domain data, including item metadata, user reviews, and collaborative signals, as seed inputs. By employing active learning strategies to select the most informative seed samples, our approach efficiently guides LLMs to generate synthetic, semantically coherent conversational interactions tailored explicitly to the target domain. Extensive experiments validate that conversational data generated by our proposed framework significantly improves the performance of LLM-based CRS models, effectively addressing the challenges of building CRS in no- or low-resource scenarios.
Related papers
- Graph Retrieval-Augmented LLM for Conversational Recommendation Systems [52.35491420330534]
G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems) is a training-free framework that combines graph retrieval-augmented generation and in-context learning.<n>G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
arXiv Detail & Related papers (2025-03-09T03:56:22Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
This paper examines the integration of Large Language Models (LLMs) within existing systems.
By leveraging the advanced natural language understanding capabilities of LLMs, our method improves RDF entity extraction within web systems.
The evaluation of this methodology shows a marked enhancement in system expressivity and the accuracy of responses to user queries.
arXiv Detail & Related papers (2024-09-24T16:31:33Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - AUGUST: an Automatic Generation Understudy for Synthesizing
Conversational Recommendation Datasets [56.052803235932686]
We propose a novel automatic dataset synthesis approach that can generate both large-scale and high-quality recommendation dialogues.
In doing so, we exploit: (i) rich personalized user profiles from traditional recommendation datasets, (ii) rich external knowledge from knowledge graphs, and (iii) the conversation ability contained in human-to-human conversational recommendation datasets.
arXiv Detail & Related papers (2023-06-16T05:27:14Z) - Improving Conversational Recommendation Systems via Counterfactual Data
Simulation [73.4526400381668]
Conversational recommender systems (CRSs) aim to provide recommendation services via natural language conversations.
Existing CRS approaches often suffer from the issue of insufficient training due to the scarcity of training data.
We propose a CounterFactual data simulation approach for CRS, named CFCRS, to alleviate the issue of data scarcity in CRSs.
arXiv Detail & Related papers (2023-06-05T12:48:56Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - Leveraging Large Language Models in Conversational Recommender Systems [9.751217336860924]
A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue.
Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding.
arXiv Detail & Related papers (2023-05-13T16:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.