InstaRevive: One-Step Image Enhancement via Dynamic Score Matching
- URL: http://arxiv.org/abs/2504.15513v1
- Date: Tue, 22 Apr 2025 01:19:53 GMT
- Title: InstaRevive: One-Step Image Enhancement via Dynamic Score Matching
- Authors: Yixuan Zhu, Haolin Wang, Ao Li, Wenliang Zhao, Yansong Tang, Jingxuan Niu, Lei Chen, Jie Zhou, Jiwen Lu,
- Abstract summary: InstaRevive is an image enhancement framework that employs score-based diffusion distillation to harness potent generative capability.<n>Our framework delivers high-quality and visually appealing results across a diverse array of challenging tasks and datasets.
- Score: 66.97989469865828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
Related papers
- FlowIE: Efficient Image Enhancement via Rectified Flow [71.6345505427213]
FlowIE is a flow-based framework that estimates straight-line paths from an elementary distribution to high-quality images.
Our contributions are rigorously validated through comprehensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2024-06-01T17:29:29Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - DepthFM: Fast Monocular Depth Estimation with Flow Matching [22.206355073676082]
Current discriminative depth estimation methods often produce blurry artifacts, while generative approaches suffer from slow sampling due to curvatures in the noise-to-depth transport.
Our method addresses these challenges by framing depth estimation as a direct transport between image and depth distributions.
Our approach achieves competitive zero-shot performance on standard benchmarks of complex natural scenes while improving sampling efficiency and only requiring minimal synthetic data for training.
arXiv Detail & Related papers (2024-03-20T17:51:53Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.