LLM-based Semantic Augmentation for Harmful Content Detection
- URL: http://arxiv.org/abs/2504.15548v1
- Date: Tue, 22 Apr 2025 02:59:03 GMT
- Title: LLM-based Semantic Augmentation for Harmful Content Detection
- Authors: Elyas Meguellati, Assaad Zeghina, Shazia Sadiq, Gianluca Demartini,
- Abstract summary: This paper introduces an approach that prompts large language models to clean noisy text and provide context-rich explanations.<n>We evaluate on the SemEval 2024 multi-label Persuasive Meme dataset and validate on the Google Jigsaw toxic comments and Facebook hateful memes datasets.<n>Our results reveal that zero-shot LLM classification underperforms on these high-context tasks compared to supervised models.
- Score: 5.954202581988127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have demonstrated strong performance on simple text classification tasks, frequently under zero-shot settings. However, their efficacy declines when tackling complex social media challenges such as propaganda detection, hateful meme classification, and toxicity identification. Much of the existing work has focused on using LLMs to generate synthetic training data, overlooking the potential of LLM-based text preprocessing and semantic augmentation. In this paper, we introduce an approach that prompts LLMs to clean noisy text and provide context-rich explanations, thereby enhancing training sets without substantial increases in data volume. We systematically evaluate on the SemEval 2024 multi-label Persuasive Meme dataset and further validate on the Google Jigsaw toxic comments and Facebook hateful memes datasets to assess generalizability. Our results reveal that zero-shot LLM classification underperforms on these high-context tasks compared to supervised models. In contrast, integrating LLM-based semantic augmentation yields performance on par with approaches that rely on human-annotated data, at a fraction of the cost. These findings underscore the importance of strategically incorporating LLMs into machine learning (ML) pipeline for social media classification tasks, offering broad implications for combating harmful content online.
Related papers
- Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVA is a framework designed to identify high-quality data that aligns well with the learned knowledge to reduce hallucinations.<n>It includes Internal Consistency Probing (ICP) and Semantic Equivalence Identification (SEI) to measure how familiar the LLM is with instruction data.<n>To ensure the quality of selected samples, we introduce an expert-aligned reward model, considering characteristics beyond just familiarity.
arXiv Detail & Related papers (2025-02-11T08:05:56Z) - LLM-SEM: A Sentiment-Based Student Engagement Metric Using LLMS for E-Learning Platforms [0.0]
LLM-SEM (Language Model-Based Student Engagement Metric) is a novel approach that leverages video metadata and sentiment analysis of student comments to measure engagement.<n>We generate high-quality sentiment predictions to mitigate text fuzziness and normalize key features such as views and likes.<n>Our holistic method combines comprehensive metadata with sentiment polarity scores to gauge engagement at both the course and lesson levels.
arXiv Detail & Related papers (2024-12-18T12:01:53Z) - Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks.
This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media.
arXiv Detail & Related papers (2024-11-22T12:37:41Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.<n>Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.<n>To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - GenCeption: Evaluate Vision LLMs with Unlabeled Unimodal Data [3.08543976986593]
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks.
This paper outlines and validates GenCeption, a novel, annotation-free evaluation method.
It requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate.
arXiv Detail & Related papers (2024-02-22T21:22:04Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
Large Vision-Language Models (LVLMs) tend to hallucinate non-existing objects in the images.
We introduce a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE)
MARINE is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.