Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers
- URL: http://arxiv.org/abs/2504.15755v1
- Date: Tue, 22 Apr 2025 10:07:56 GMT
- Title: Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers
- Authors: Daniel González-Cuadra, Alejandro Bermudez,
- Abstract summary: Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.<n>We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.<n>Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the emergence of bond-directional spin-spin interactions in a synthetic Fermi-Hubbard bilayer that can be realized with ultracold fermions in Raman optical lattices. The model exploits synthetic dimensions to couple two honeycomb layers, each corresponding to a different hyperfine atomic state, via Raman-assisted tunneling and, moreover, via an inter-layer Hubbard repulsion due to the cold-atom scattering. In the strong-coupling regime at half filling, we derive effective spin Hamiltonians for the kinetic exchange featuring Kitaev, Heisenberg, off-diagonal exchange ($\Gamma$-couplings), as well as tunable Dzyaloshinskii-Moriya interactions. We identify specific configurations that generate both ferromagnetic and antiferromagnetic Kitaev couplings with various perturbations of relevance to Kitaev materials, providing a tunable platform that can explore how quantum spin liquids emerge from itinerant fermion systems. We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles, with possible phase transitions thereof. In an extreme anisotropic limit, we show that the model reduces to an inter-layer ribbon in a quasi-1D ladder, allowing for a numerical study of the correlated ground state using matrix product states. We find a transition from a symmetry-protected topological insulator to a Kitaev-like regime characterized by nonlocal string order. Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models, bridging itinerant fermionic systems and spin-liquid physics.
Related papers
- Quantum Phase Diagram of the Bilayer Kitaev-Heisenberg Model [0.0]
We study the ground-state phase diagram of the Kitaev-Heisenberg model on the bilayer honeycomb lattice.<n>We find that beyond various magnetically ordered phases, two extended quantum spin liquid phases arise in the proximity of the Kitaev limit.
arXiv Detail & Related papers (2024-12-23T11:53:01Z) - Itinerant magnetism in Hubbard models with long-range interactions [0.0]
A wide variety of platforms, ranging from semiconductor quantum-dot arrays to mo'e materials, have recently emerged as powerful quantum simulators.
We investigate the effects of the Hubbard model which includes long-dimensional lattices.
For small electron dopings, we uncover a rich variety of magnetically ordered numerically states.
arXiv Detail & Related papers (2024-10-01T18:00:00Z) - Emergent quantum Majorana metal from a chiral spin liquid [50.56734933757366]
We propose a mechanism to explain the emergence of an intermediate gapless spin liquid phase in the antiferromagnetic Kitaev model.<n>We show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projectedangled Pair States method.
arXiv Detail & Related papers (2024-05-20T18:00:01Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.