LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale
- URL: http://arxiv.org/abs/2504.16030v1
- Date: Tue, 22 Apr 2025 16:52:09 GMT
- Title: LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale
- Authors: Joya Chen, Ziyun Zeng, Yiqi Lin, Wei Li, Zejun Ma, Mike Zheng Shou,
- Abstract summary: We propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps.<n>Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR.<n> Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models in commentary quality even working in a real-time mode.
- Score: 35.58838734226919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent video large language models (Video LLMs) often depend on costly human annotations or proprietary model APIs (e.g., GPT-4o) to produce training data, which limits their training at scale. In this paper, we explore large-scale training for Video LLM with cheap automatic speech recognition (ASR) transcripts. Specifically, we propose a novel streaming training approach that densely interleaves the ASR words and video frames according to their timestamps. Compared to previous studies in vision-language representation with ASR, our method naturally fits the streaming characteristics of ASR, thus enabling the model to learn temporally-aligned, fine-grained vision-language modeling. To support the training algorithm, we introduce a data production pipeline to process YouTube videos and their closed captions (CC, same as ASR), resulting in Live-CC-5M dataset for pre-training and Live-WhisperX-526K dataset for high-quality supervised fine-tuning (SFT). Remarkably, even without SFT, the ASR-only pre-trained LiveCC-7B-Base model demonstrates competitive general video QA performance and exhibits a new capability in real-time video commentary. To evaluate this, we carefully design a new LiveSports-3K benchmark, using LLM-as-a-judge to measure the free-form commentary. Experiments show our final LiveCC-7B-Instruct model can surpass advanced 72B models (Qwen2.5-VL-72B-Instruct, LLaVA-Video-72B) in commentary quality even working in a real-time mode. Meanwhile, it achieves state-of-the-art results at the 7B/8B scale on popular video QA benchmarks such as VideoMME and OVOBench, demonstrating the broad generalizability of our approach. All resources of this paper have been released at https://showlab.github.io/livecc.
Related papers
- SEVERE++: Evaluating Benchmark Sensitivity in Generalization of Video Representation Learning [78.44705665291741]
We present a comprehensive evaluation of modern video self-supervised models.
We focus on generalization across four key downstream factors: domain shift, sample efficiency, action granularity, and task diversity.
Our analysis shows that, despite architectural advances, transformer-based models remain sensitive to downstream conditions.
arXiv Detail & Related papers (2025-04-08T06:00:28Z) - VideoSAVi: Self-Aligned Video Language Models without Human Supervision [0.6854849895338531]
VideoSAVi is a self-training pipeline that enables Video-LLMs to reason over video content without external supervision.<n>VideoSAVi achieves state-of-the-art performance on MVBench (74.0%) and delivers significant improvements.<n>Our model-agnostic approach is computationally efficient, requiring only 32 frames.
arXiv Detail & Related papers (2024-12-01T00:33:05Z) - VideoLLM-online: Online Video Large Language Model for Streaming Video [27.073238234038826]
We propose a novel Learning-In-Video-Stream framework, which enables temporally aligned, long-context, and real-time conversation within a continuous video stream.
Our framework supports streaming dialogue in a 5-minute video clip at over 10 FPS on an A100 GPU.
It also showcases state-of-the-art performance on public offline video benchmarks, such as recognition, captioning, and forecasting.
arXiv Detail & Related papers (2024-06-17T17:55:32Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VindLU: A Recipe for Effective Video-and-Language Pretraining [83.49216853881595]
This paper conducts an empirical study demystifying the most important factors in the VidL model design.
Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining.
Our model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks.
arXiv Detail & Related papers (2022-12-09T18:54:05Z) - LiteVL: Efficient Video-Language Learning with Enhanced Spatial-Temporal
Modeling [48.283659682112926]
We propose LiteVL, which adapts a pre-trained image-language model BLIP into a video-text model directly on downstream tasks.
We also propose a non-parametric pooling mechanism to adaptively reweight the fine-grained video embedding conditioned on the text.
arXiv Detail & Related papers (2022-10-21T13:03:49Z) - Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision
and Language Models [67.31684040281465]
We present textbfMOV, a simple yet effective method for textbfMultimodal textbfOpen-textbfVocabulary video classification.
In MOV, we directly use the vision encoder from pre-trained VLMs with minimal modifications to encode video, optical flow and audio spectrogram.
arXiv Detail & Related papers (2022-07-15T17:59:11Z) - Learning Spatiotemporal Features via Video and Text Pair Discrimination [30.64670449131973]
Cross-modal pair (CPD) framework captures correlation between video and its associated text.
We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (-300k) to demonstrate its effectiveness.
arXiv Detail & Related papers (2020-01-16T08:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.