Classification of Firn Data via Topological Features
- URL: http://arxiv.org/abs/2504.16150v1
- Date: Tue, 22 Apr 2025 14:33:33 GMT
- Title: Classification of Firn Data via Topological Features
- Authors: Sarah Day, Jesse Dimino, Matt Jester, Kaitlin Keegan, Thomas Weighill,
- Abstract summary: We evaluate the performance of topological features for generalizable and robust classification of firn image data.<n>Firn refers to layers of granular snow within glaciers that haven't been compressed into ice.
- Score: 2.3592914313389253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we evaluate the performance of topological features for generalizable and robust classification of firn image data, with the broader goal of understanding the advantages, pitfalls, and trade-offs in topological featurization. Firn refers to layers of granular snow within glaciers that haven't been compressed into ice. This compactification process imposes distinct topological and geometric structure on firn that varies with depth within the firn column, making topological data analysis (TDA) a natural choice for understanding the connection between depth and structure. We use two classes of topological features, sublevel set features and distance transform features, together with persistence curves, to predict sample depth from microCT images. A range of challenging training-test scenarios reveals that no one choice of method dominates in all categories, and uncoveres a web of trade-offs between accuracy, interpretability, and generalizability.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.<n>Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.<n>We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Point-Level Topological Representation Learning on Point Clouds [5.079602839359521]
We propose a novel method to extract node-level topological features from complex point clouds.<n>We verify the effectiveness of these topological point features on both synthetic and real-world data.
arXiv Detail & Related papers (2024-06-04T13:29:12Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Image Classification using Combination of Topological Features and
Neural Networks [1.0323063834827417]
We use the persistent homology method, a technique in topological data analysis (TDA), to extract essential topological features from the data space.
This was carried out with the aim of classifying images from multiple classes in the MNIST dataset.
Our approach inserts topological features into deep learning approaches composed by single and two-streams neural networks.
arXiv Detail & Related papers (2023-11-10T20:05:40Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
We first show that a three-layer neural network can be designed to approximate an indicator function over a compact set.
This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure.
We prove the universal approximation property of three-layer ReLU networks using our topological approach.
arXiv Detail & Related papers (2023-05-25T14:17:15Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
This paper performs a detailed analysis of the effectiveness of topological properties for image classification in various training scenarios.
We identify the scenarios that benefit the most from topological features, e.g., training simple networks on small datasets.
arXiv Detail & Related papers (2022-07-09T08:01:11Z) - Bending Graphs: Hierarchical Shape Matching using Gated Optimal
Transport [80.64516377977183]
Shape matching has been a long-studied problem for the computer graphics and vision community.
We investigate a hierarchical learning design, to which we incorporate local patch-level information and global shape-level structures.
We propose a novel optimal transport solver by recurrently updating features on non-confident nodes to learn globally consistent correspondences between the shapes.
arXiv Detail & Related papers (2022-02-03T11:41:46Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
We propose a new approach to train deep image segmentation networks for better topological accuracy.
We identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy.
On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
arXiv Detail & Related papers (2021-03-18T02:47:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - PLLay: Efficient Topological Layer based on Persistence Landscapes [24.222495922671442]
PLLay is a novel topological layer for general deep learning models based on persistence landscapes.
We show differentiability with respect to layer inputs, for a general persistent homology with arbitrary filtration.
arXiv Detail & Related papers (2020-02-07T13:34:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.