Hexcute: A Tile-based Programming Language with Automatic Layout and Task-Mapping Synthesis
- URL: http://arxiv.org/abs/2504.16214v2
- Date: Wed, 30 Apr 2025 17:29:28 GMT
- Title: Hexcute: A Tile-based Programming Language with Automatic Layout and Task-Mapping Synthesis
- Authors: Xiao Zhang, Yaoyao Ding, Yang Hu, Gennady Pekhimenko,
- Abstract summary: Hexcute is a tile-based programming language that exposes shared memory and register abstractions to enable fine-grained optimization for mixed-type operators.<n>It automates layout and task mapping synthesis with a novel type-inference-based algorithm.<n>Our evaluation shows that Hexcute generalizes to a wide range of DL operators, achieves 1.7-11.28$times$ speedup over existing DL compilers for mixed-type operators, and brings up to 2.91$times$ speedup in the end-to-end evaluation.
- Score: 8.742879659920643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) workloads mainly run on accelerators like GPUs. Recent DL quantization techniques demand a new matrix multiplication operator with mixed input data types, further complicating GPU optimization. Prior high-level compilers like Triton lack the expressiveness to implement key optimizations like fine-grained data pipelines and hardware-friendly memory layouts for these operators, while low-level programming models, such as Hidet, Graphene, and CUTLASS, require significant programming efforts. To balance expressiveness with engineering effort, we propose Hexcute, a tile-based programming language that exposes shared memory and register abstractions to enable fine-grained optimization for these operators. Additionally, Hexcute leverages task mapping to schedule the GPU program, and to reduce programming efforts, it automates layout and task mapping synthesis with a novel type-inference-based algorithm. Our evaluation shows that Hexcute generalizes to a wide range of DL operators, achieves 1.7-11.28$\times$ speedup over existing DL compilers for mixed-type operators, and brings up to 2.91$\times$ speedup in the end-to-end evaluation.
Related papers
- CORE: Common Random Reconstruction for Distributed Optimization with
Provable Low Communication Complexity [110.50364486645852]
Communication complexity has become a major bottleneck for speeding up training and scaling up machine numbers.
We propose Common Om REOm, which can be used to compress information transmitted between machines.
arXiv Detail & Related papers (2023-09-23T08:45:27Z) - Hector: An Efficient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU Architectures [24.841128441671234]
RGNNs are graph neural networks with dedicated structures for modeling the different types of nodes and edges in heterogeneous graphs.
We propose Hector, a novel two-level intermediate representation and its code generator framework, to capture the key properties of RGNN models.
Hector achieves up to 9.9x speed-up in inference and 43.7x speed-up in training compared with the state-of-the-art public systems.
arXiv Detail & Related papers (2023-01-16T06:53:18Z) - NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual
Question Answering [52.10214317661547]
Current numerical reasoning methods autoregressively decode program sequences.
The accuracy of program generation drops sharply as the decoding steps unfold due to error propagation.
In this paper, we propose a non-autoregressive program generation framework.
arXiv Detail & Related papers (2022-11-07T11:25:21Z) - Hidet: Task Mapping Programming Paradigm for Deep Learning Tensor
Programs [11.338285393619042]
We propose to embed the scheduling process into tensor programs and use dedicated mappings, called task mappings, to define the computation assignment and ordering.
With the proposed paradigm, we implement a deep learning compiler - Hidet.
arXiv Detail & Related papers (2022-10-18T05:32:13Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
We present NumS, an array programming library which optimize NumPy-like expressions on task-based distributed systems.
This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS)
We show that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem.
arXiv Detail & Related papers (2022-06-28T20:13:40Z) - Tensor Processing Primitives: A Programming Abstraction for Efficiency
and Portability in Deep Learning Workloads [86.62083829086393]
This work introduces the Processing Primitives (TPP), a programming abstraction striving for efficient, portable implementation of Deep Learning-workloads with high-productivity.
TPPs define a compact, yet versatile set of 2D-tensor operators (or a virtual ISA), which can be utilized as building-blocks to construct complex operators on high-dimensional tensors.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end DL-workloads expressed entirely via TPPs that outperform state-of-the-art implementations on multiple platforms.
arXiv Detail & Related papers (2021-04-12T18:35:49Z) - Systolic Computing on GPUs for Productive Performance [2.8064596842326575]
We propose a language and compiler to productively build high-performance systolic arrays that run on GPUs.
A programmer it' specifies a projection of a dataflow compute onto a linear systolic array, while leaving the detailed implementation of the projection to a compiler.
The compiler implements the specified projection and maps the linear systolic array to the SIMD execution units and vector registers of GPUs.
arXiv Detail & Related papers (2020-10-29T18:49:54Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z) - ProGraML: Graph-based Deep Learning for Program Optimization and
Analysis [16.520971531754018]
We introduce ProGraML, a graph-based program representation for machine learning.
ProGraML achieves an average 94.0 F1 score, significantly outperforming the state-of-the-art approaches.
We then apply our approach to two high-level tasks - heterogeneous device mapping and program classification - setting new state-of-the-art performance in both.
arXiv Detail & Related papers (2020-03-23T20:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.