ReGraph: A Tool for Binary Similarity Identification
- URL: http://arxiv.org/abs/2504.16219v1
- Date: Tue, 22 Apr 2025 19:13:11 GMT
- Title: ReGraph: A Tool for Binary Similarity Identification
- Authors: Li Zhou, Marc Dacier, Charalambos Konstantinou,
- Abstract summary: We present a framework called ReGraph to efficiently compare binary code functions across architectures and optimization levels.<n>Our evaluation with public datasets highlights that ReGraph exhibits a significant speed advantage, performing 700 times faster than Natural Language Processing (NLP)-based methods.
- Score: 5.27343841527839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Binary Code Similarity Detection (BCSD) is not only essential for security tasks such as vulnerability identification but also for code copying detection, yet it remains challenging due to binary stripping and diverse compilation environments. Existing methods tend to adopt increasingly complex neural networks for better accuracy performance. The computation time increases with the complexity. Even with powerful GPUs, the treatment of large-scale software becomes time-consuming. To address these issues, we present a framework called ReGraph to efficiently compare binary code functions across architectures and optimization levels. Our evaluation with public datasets highlights that ReGraph exhibits a significant speed advantage, performing 700 times faster than Natural Language Processing (NLP)-based methods while maintaining comparable accuracy results with respect to the state-of-the-art models.
Related papers
- Beyond the Edge of Function: Unraveling the Patterns of Type Recovery in Binary Code [55.493408628371235]
We propose ByteTR, a framework for recovering variable types in binary code.<n>In light of the ubiquity of variable propagation across functions, ByteTR conducts inter-procedural analysis to trace variable propagation and employs a gated graph neural network to capture long-range data flow dependencies for variable type recovery.
arXiv Detail & Related papers (2025-03-10T12:27:05Z) - Is Function Similarity Over-Engineered? Building a Benchmark [37.33020176141435]
We build a new benchmark for binary function similarity detection consisting of high-quality datasets and tests that better reflect real-world use cases.
Our benchmark reveals that a new, simple basline, one which looks at only the raw bytes of a function, and requires no disassembly or other pre-processing, is able to achieve state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2024-10-30T03:59:46Z) - Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - BinSimDB: Benchmark Dataset Construction for Fine-Grained Binary Code Similarity Analysis [6.093226756571566]
We construct a benchmark dataset for fine-grained binary code similarity analysis called BinSimDB.
Specifically, we propose BMerge and BPair algorithms to bridge the discrepancies between two binary code snippets.
The experimental results demonstrate that BinSimDB significantly improves the performance of binary code similarity comparison.
arXiv Detail & Related papers (2024-10-14T05:13:48Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) matches pedestrians across disjoint cameras.
Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation.
We propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25$ times.
arXiv Detail & Related papers (2022-07-13T02:44:05Z) - Rate Coding or Direct Coding: Which One is Better for Accurate, Robust,
and Energy-efficient Spiking Neural Networks? [4.872468969809081]
Spiking Neural Networks (SNNs) works focus on an image classification task, therefore various coding techniques have been proposed to convert an image into temporal binary spikes.
Among them, rate coding and direct coding are regarded as prospective candidates for building a practical SNN system.
We conduct a comprehensive analysis of the two codings from three perspectives: accuracy, adversarial robustness, and energy-efficiency.
arXiv Detail & Related papers (2022-01-31T16:18:07Z) - Semantic-aware Binary Code Representation with BERT [27.908093567605484]
A wide range of binary analysis applications, such as bug discovery, malware analysis and code clone detection, require recovery of contextual meanings on a binary code.
Recently, binary analysis techniques based on machine learning have been proposed to automatically reconstruct the code representation of a binary.
In this paper, we propose DeepSemantic utilizing BERT in producing the semantic-aware code representation of a binary code.
arXiv Detail & Related papers (2021-06-10T03:31:29Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
This paper proposes an efficient and adaptive code-driven graph.
It is updated by decoding in the context of an auto-encoder.
Experiments on benchmarked datasets clearly show the superiority of our framework over the state-of-the-art hashing methods.
arXiv Detail & Related papers (2020-02-27T05:58:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.