SignX: The Foundation Model for Sign Recognition
- URL: http://arxiv.org/abs/2504.16315v1
- Date: Tue, 22 Apr 2025 23:23:39 GMT
- Title: SignX: The Foundation Model for Sign Recognition
- Authors: Sen Fang, Chunyu Sui, Hongwei Yi, Carol Neidle, Dimitris N. Metaxas,
- Abstract summary: This paper proposes SignX, a foundation model framework for sign recognition.<n>It is a concise yet powerful framework applicable to multiple human activity recognition scenarios.<n> Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
- Score: 28.651340554377906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of sign language data processing brings many challenges. The current approach to recognition of ASL signs aims to translate RGB sign language videos through pose information into English-based ID glosses, which serve to uniquely identify ASL signs. Note that there is no shared convention for assigning such glosses to ASL signs, so it is essential that the same glossing conventions are used for all of the data in the datasets that are employed. This paper proposes SignX, a foundation model framework for sign recognition. It is a concise yet powerful framework applicable to multiple human activity recognition scenarios. First, we developed a Pose2Gloss component based on an inverse diffusion model, which contains a multi-track pose fusion layer that unifies five of the most powerful pose information sources--SMPLer-X, DWPose, Mediapipe, PrimeDepth, and Sapiens Segmentation--into a single latent pose representation. Second, we trained a Video2Pose module based on ViT that can directly convert raw video into signer pose representation. Through this 2-stage training framework, we enable sign language recognition models to be compatible with existing pose formats, laying the foundation for the common pose estimation necessary for sign recognition. Experimental results show that SignX can recognize signs from sign language video, producing predicted gloss representations with greater accuracy than has been reported in prior work.
Related papers
- Signs as Tokens: A Retrieval-Enhanced Multilingual Sign Language Generator [55.94334001112357]
We introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs.<n>We propose a retrieval-enhanced SLG approach, which incorporates external sign dictionaries to provide accurate word-level signs.
arXiv Detail & Related papers (2024-11-26T18:28:09Z) - EvSign: Sign Language Recognition and Translation with Streaming Events [59.51655336911345]
Event camera could naturally perceive dynamic hand movements, providing rich manual clues for sign language tasks.
We propose efficient transformer-based framework for event-based SLR and SLT tasks.
Our method performs favorably against existing state-of-the-art approaches with only 0.34% computational cost.
arXiv Detail & Related papers (2024-07-17T14:16:35Z) - A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars [49.60328609426056]
Spoken2Sign is a system for translating spoken languages into sign languages.
We present a simple baseline consisting of three steps: creating a gloss-video dictionary, estimating a 3D sign for each sign video, and training a Spoken2Sign model.
As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs.
arXiv Detail & Related papers (2024-01-09T18:59:49Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Natural Language-Assisted Sign Language Recognition [28.64871971445024]
We propose the Natural Language-Assisted Sign Language Recognition framework.
It exploits semantic information contained in glosses (sign labels) to mitigate the problem of visually indistinguishable signs (VISigns) in sign languages.
Our method achieves state-of-the-art performance on three widely-adopted benchmarks: MSASL, WLASL, and NMFs-CSL.
arXiv Detail & Related papers (2023-03-21T17:59:57Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
Sign language is used by deaf or speech impaired people to communicate.
Skeleton-based recognition is becoming popular that it can be further ensembled with RGB-D based method to achieve state-of-the-art performance.
Inspired by the recent development of whole-body pose estimation citejin 2020whole, we propose recognizing sign language based on the whole-body key points and features.
arXiv Detail & Related papers (2021-03-16T03:38:17Z) - Pose-based Sign Language Recognition using GCN and BERT [0.0]
Word-level sign language recognition (WSLR) is the first important step towards understanding and interpreting sign language.
recognizing signs from videos is a challenging task as the meaning of a word depends on a combination of subtle body motions, hand configurations, and other movements.
Recent pose-based architectures for W SLR either model both the spatial and temporal dependencies among the poses in different frames simultaneously or only model the temporal information without fully utilizing the spatial information.
We tackle the problem of W SLR using a novel pose-based approach, which captures spatial and temporal information separately and performs late fusion.
arXiv Detail & Related papers (2020-12-01T19:10:50Z) - Everybody Sign Now: Translating Spoken Language to Photo Realistic Sign
Language Video [43.45785951443149]
To be truly understandable by Deaf communities, an automatic Sign Language Production system must generate a photo-realistic signer.
We propose SignGAN, the first SLP model to produce photo-realistic continuous sign language videos directly from spoken language.
A pose-conditioned human synthesis model is then introduced to generate a photo-realistic sign language video from the skeletal pose sequence.
arXiv Detail & Related papers (2020-11-19T14:31:06Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
Given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video.
We train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles which provide additional weak-supervision; and (3) looking up words in visual sign language dictionaries.
These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning.
arXiv Detail & Related papers (2020-10-08T14:12:56Z) - BSL-1K: Scaling up co-articulated sign language recognition using
mouthing cues [106.21067543021887]
We show how to use mouthing cues from signers to obtain high-quality annotations from video data.
The BSL-1K dataset is a collection of British Sign Language (BSL) signs of unprecedented scale.
arXiv Detail & Related papers (2020-07-23T16:59:01Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation.
We propose a novel method that learns domain-invariant visual concepts and fertilizes WSLR models by transferring knowledge of subtitled news sign to them.
arXiv Detail & Related papers (2020-03-08T03:05:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.