Hyper-Transforming Latent Diffusion Models
- URL: http://arxiv.org/abs/2504.16580v3
- Date: Tue, 03 Jun 2025 10:09:29 GMT
- Title: Hyper-Transforming Latent Diffusion Models
- Authors: Ignacio Peis, Batuhan Koyuncu, Isabel Valera, Jes Frellsen,
- Abstract summary: We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models.<n>Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork.<n>This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining.
- Score: 16.86455404636477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming: a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining. We validate our approach across multiple modalities, demonstrating improved scalability, expressiveness, and generalization over existing INR-based generative models. Our findings establish a unified and flexible framework for learning structured function representations.
Related papers
- FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities [69.26544016976396]
We exploit the redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality.<n>We preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality.
arXiv Detail & Related papers (2025-03-28T15:21:24Z) - Re-Parameterization of Lightweight Transformer for On-Device Speech Emotion Recognition [10.302458835329539]
We introduce a new method, namely Transformer Re- parameterization, to boost the performance of lightweight Transformer models.
Experimental results show that our proposed method consistently improves the performance of lightweight Transformers, even making them comparable to large models.
arXiv Detail & Related papers (2024-11-14T10:36:19Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
We propose a unified and massively scalable Neural Residual Diffusion Models framework (Neural-RDM)
The proposed neural residual models obtain state-of-the-art scores on image's and video's generative benchmarks.
arXiv Detail & Related papers (2024-06-19T04:57:18Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
We propose a self-supervised pre-training (SSP) method for table structure recognition transformers.
We discover that the performance gap between the linear projection transformer and the hybrid CNN-transformer can be mitigated by SSP of the visual encoder in the TSR model.
arXiv Detail & Related papers (2024-02-23T19:34:06Z) - DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations [13.357094648241839]
Domain-agnostic Latent Diffusion Model for INRs generates adaptive positional embeddings instead of neural networks' weights.
We develop a decomposed-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions.
Experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI.
arXiv Detail & Related papers (2024-01-23T06:21:34Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Decision Transformer: Reinforcement Learning via Sequence Modeling [102.86873656751489]
We present a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem.
We present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling.
Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
arXiv Detail & Related papers (2021-06-02T17:53:39Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
State-of-the-art neural language models (LMs) represented by Transformers are highly complex.
This paper proposes a full Bayesian learning framework for Transformer LM estimation.
arXiv Detail & Related papers (2021-02-09T10:55:27Z) - Pretraining Techniques for Sequence-to-Sequence Voice Conversion [57.65753150356411]
Sequence-to-sequence (seq2seq) voice conversion (VC) models are attractive owing to their ability to convert prosody.
We propose to transfer knowledge from other speech processing tasks where large-scale corpora are easily available, typically text-to-speech (TTS) and automatic speech recognition (ASR)
We argue that VC models with such pretrained ASR or TTS model parameters can generate effective hidden representations for high-fidelity, highly intelligible converted speech.
arXiv Detail & Related papers (2020-08-07T11:02:07Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.