Simplified Swarm Learning Framework for Robust and Scalable Diagnostic Services in Cancer Histopathology
- URL: http://arxiv.org/abs/2504.16732v1
- Date: Wed, 23 Apr 2025 14:04:15 GMT
- Title: Simplified Swarm Learning Framework for Robust and Scalable Diagnostic Services in Cancer Histopathology
- Authors: Yanjie Wu, Yuhao Ji, Saiho Lee, Juniad Akram, Ali Braytee, Ali Anaissi,
- Abstract summary: This paper introduces a textitSimplified Peer-to-Peer Swarm Learning Framework tailored for resource-constrained environments.<n>Applying to cancer histopathology, the framework integrates optimized pre-trained models, such as TorchXRayVision, enhanced with DenseNet decoders.
- Score: 0.16163129903911513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexities of healthcare data, including privacy concerns, imbalanced datasets, and interoperability issues, necessitate innovative machine learning solutions. Swarm Learning (SL), a decentralized alternative to Federated Learning, offers privacy-preserving distributed training, but its reliance on blockchain technology hinders accessibility and scalability. This paper introduces a \textit{Simplified Peer-to-Peer Swarm Learning (P2P-SL) Framework} tailored for resource-constrained environments. By eliminating blockchain dependencies and adopting lightweight peer-to-peer communication, the proposed framework ensures robust model synchronization while maintaining data privacy. Applied to cancer histopathology, the framework integrates optimized pre-trained models, such as TorchXRayVision, enhanced with DenseNet decoders, to improve diagnostic accuracy. Extensive experiments demonstrate the framework's efficacy in handling imbalanced and biased datasets, achieving comparable performance to centralized models while preserving privacy. This study paves the way for democratizing advanced machine learning in healthcare, offering a scalable, accessible, and efficient solution for privacy-sensitive diagnostic applications.
Related papers
- Quantum-Inspired Privacy-Preserving Federated Learning Framework for Secure Dementia Classification [0.0]
This paper introduces a novel framework that integrates federated learning with quantum-inspired encryption techniques for dementia classification.<n>The framework offers significant implications for democratizing access to AI-driven dementia diagnostics in low- and middle-income countries.
arXiv Detail & Related papers (2025-03-05T08:49:31Z) - SCALE: Self-regulated Clustered federAted LEarning in a Homogeneous Environment [4.925906256430176]
Federated Learning (FL) has emerged as a transformative approach for enabling distributed machine learning while preserving user privacy.
This paper presents a novel FL methodology that overcomes these limitations by eliminating the dependency on edge servers.
arXiv Detail & Related papers (2024-07-25T20:42:16Z) - Blockchain Integrated Federated Learning in Edge-Fog-Cloud Systems for IoT based Healthcare Applications A Survey [18.36339203254509]
Federated learning, a new distributed paradigm, supports collaborative learning while preserving privacy.
The integration of federated learning and blockchain is particularly advantageous for handling sensitive data, such as in healthcare.
This survey article explores the architecture, structure, functions, and characteristics of federated learning and blockchain, their applications in various computing paradigms, and evaluates their implementations in healthcare.
arXiv Detail & Related papers (2024-06-08T16:36:48Z) - When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
Machine learning models offer the capability to forecast future energy production or consumption.
However, legal and policy constraints within specific energy sectors present technical hurdles in utilizing data from diverse sources.
We propose adopting a Swarm Learning scheme, which replaces the centralized server with a blockchain-based distributed network.
arXiv Detail & Related papers (2024-06-07T08:42:26Z) - Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification [5.440545944342685]
This paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL.
The proposed method has been validated on a real-world diabetic retinopathy image classification dataset.
arXiv Detail & Related papers (2024-04-24T01:37:20Z) - Communication-Efficient Hybrid Federated Learning for E-health with Horizontal and Vertical Data Partitioning [67.49221252724229]
E-health allows smart devices and medical institutions to collaboratively collect patients' data, which is trained by Artificial Intelligence (AI) technologies to help doctors make diagnosis.
Applying federated learning in e-health faces many challenges.
Medical data is both horizontally and vertically partitioned.
A naive combination of HFL and VFL has limitations including low training efficiency, unsound convergence analysis, and lack of parameter tuning strategies.
arXiv Detail & Related papers (2024-04-15T19:45:07Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.