Fried Parameter Estimation from Single Wavefront Sensor Image with Artificial Neural Networks
- URL: http://arxiv.org/abs/2504.17029v1
- Date: Wed, 23 Apr 2025 18:16:07 GMT
- Title: Fried Parameter Estimation from Single Wavefront Sensor Image with Artificial Neural Networks
- Authors: Jeffrey Smith, Taisei Fujii, Jesse Craney, Charles Gretton,
- Abstract summary: Atmospheric turbulence degrades the quality of astronomical observations in ground-based telescopes, leading to distorted and blurry images.<n> Adaptive Optics (AO) systems are designed to counteract these effects, using atmospheric measurements captured by a wavefront sensor to make real-time corrections to the incoming wavefront.<n>The Fried parameter, r0, characterises the strength of atmospheric turbulence and is an essential control parameter for optimising the performance of AO systems.<n>We develop a novel data-driven approach, adapting machine learning methods from computer vision for Fried parameter estimation from a single Shack-Hartmann or pyramid wavefront sensor image.
- Score: 0.9883562565157392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atmospheric turbulence degrades the quality of astronomical observations in ground-based telescopes, leading to distorted and blurry images. Adaptive Optics (AO) systems are designed to counteract these effects, using atmospheric measurements captured by a wavefront sensor to make real-time corrections to the incoming wavefront. The Fried parameter, r0, characterises the strength of atmospheric turbulence and is an essential control parameter for optimising the performance of AO systems and more recently sky profiling for Free Space Optical (FSO) communication channels. In this paper, we develop a novel data-driven approach, adapting machine learning methods from computer vision for Fried parameter estimation from a single Shack-Hartmann or pyramid wavefront sensor image. Using these data-driven methods, we present a detailed simulation-based evaluation of our approach using the open-source COMPASS AO simulation tool to evaluate both the Shack-Hartmann and pyramid wavefront sensors. Our evaluation is over a range of guide star magnitudes, and realistic noise, atmospheric and instrument conditions. Remarkably, we are able to develop a single network-based estimator that is accurate in both open and closed-loop AO configurations. Our method accurately estimates the Fried parameter from a single WFS image directly from AO telemetry to a few millimetres. Our approach is suitable for real time control, exhibiting 0.83ms r0 inference times on retail NVIDIA RTX 3090 GPU hardware, and thereby demonstrating a compelling economic solution for use in real-time instrument control.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Is That Rain? Understanding Effects on Visual Odometry Performance for Autonomous UAVs and Efficient DNN-based Rain Classification at the Edge [1.8936798735951972]
State-of-the-art local tracking and trajectory planning are typically performed using camera sensor input to the flight control algorithm.<n>We show that a worst-case average tracking error of 1.5 m is possible for a state-of-the-art visual odometry system.<n>We train a set of deep neural network models suited to mobile and constrained deployment scenarios to determine the extent to which it may be possible to efficiently and accurately classify these rainy' conditions.
arXiv Detail & Related papers (2024-07-17T15:47:25Z) - High-accuracy Vision-Based Attitude Estimation System for Air-Bearing
Spacecraft Simulators [0.0]
This paper shows a novel and versatile method to compute the attitude of rotational air-bearing platforms using a monocular camera and sets of fiducial markers.
Auto-calibration procedures to perform a preliminary estimation of the system parameters are shown.
Results show expected 1-sigma accuracies in the order of $sim$ 12 arcsec and $sim$ 37 arcsec for about- and cross-boresight rotations of the platform.
arXiv Detail & Related papers (2023-12-13T13:55:36Z) - RFTrans: Leveraging Refractive Flow of Transparent Objects for Surface
Normal Estimation and Manipulation [50.10282876199739]
This paper introduces RFTrans, an RGB-D-based method for surface normal estimation and manipulation of transparent objects.
It integrates the RFNet, which predicts refractive flow, object mask, and boundaries, followed by the F2Net, which estimates surface normal from the refractive flow.
A real-world robot grasping task witnesses an 83% success rate, proving that refractive flow can help enable direct sim-to-real transfer.
arXiv Detail & Related papers (2023-11-21T07:19:47Z) - High-precision interpolation of stellar atmospheres with a deep neural
network using a 1D convolutional auto encoder for feature extraction [0.0]
We establish a reliable, precise, lightweight, and fast method for recovering stellar model atmospheres.
We employ a fully connected deep neural network which in turn uses a 1D convolutional auto-encoder to extract the nonlinearities of a grid.
We show a higher precision with a convolutional auto-encoder than using principal component analysis as a feature extractor.
arXiv Detail & Related papers (2023-06-12T08:16:26Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - LGC-Net: A Lightweight Gyroscope Calibration Network for Efficient
Attitude Estimation [10.468378902106613]
We present a calibration neural network model for denoising low-cost microelectromechanical system (MEMS) gyroscope and estimating the attitude of a robot in real-time.
Key idea is extracting local and global features from the time window of inertial measurement units (IMU) measurements to regress the output compensation components for the gyroscope dynamically.
The proposed algorithm is evaluated in the EuRoC and TUM-VI datasets and achieves state-of-the-art on the (unseen) test sequences with a more lightweight model structure.
arXiv Detail & Related papers (2022-09-19T08:03:03Z) - Sensor-Guided Optical Flow [53.295332513139925]
This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy on known or unseen domains.
We show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms.
arXiv Detail & Related papers (2021-09-30T17:59:57Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images.
Minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences.
We propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters.
arXiv Detail & Related papers (2021-03-30T17:07:49Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Efficient Real-Time Radial Distortion Correction for UAVs [1.7149364927872015]
We present a novel algorithm for onboard radial distortion correction for unmanned aerial vehicles (UAVs) equipped with an inertial measurement unit (IMU)
This approach makes calibration procedures redundant, thus allowing for exchange of optics extemporaneously.
We propose a fast and robust minimal solver for simultaneously estimating the focal length, radial distortion profile and motion parameters from homographies.
arXiv Detail & Related papers (2020-10-08T18:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.