Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
- URL: http://arxiv.org/abs/2504.17331v1
- Date: Thu, 24 Apr 2025 07:48:09 GMT
- Title: Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
- Authors: Süleyman Özdel, Kadir Burak Buldu, Enkelejda Kasneci, Efe Bozkir,
- Abstract summary: We propose a novel locomotion technique powered by large language models (LLMs)<n>We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach.<n>Our findings indicate that the LLM-driven locomotion possesses comparable usability, presence, and cybersickness scores to established methods.
- Score: 8.469329222500726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Locomotion plays a crucial role in shaping the user experience within virtual reality environments. In particular, hands-free locomotion offers a valuable alternative by supporting accessibility and freeing users from reliance on handheld controllers. To this end, traditional speech-based methods often depend on rigid command sets, limiting the naturalness and flexibility of interaction. In this study, we propose a novel locomotion technique powered by large language models (LLMs), which allows users to navigate virtual environments using natural language with contextual awareness. We evaluate three locomotion methods: controller-based teleportation, voice-based steering, and our language model-driven approach. Our evaluation measures include eye-tracking data analysis, including explainable machine learning through SHAP analysis as well as standardized questionnaires for usability, presence, cybersickness, and cognitive load to examine user attention and engagement. Our findings indicate that the LLM-driven locomotion possesses comparable usability, presence, and cybersickness scores to established methods like teleportation, demonstrating its novel potential as a comfortable, natural language-based, hands-free alternative. In addition, it enhances user attention within the virtual environment, suggesting greater engagement. Complementary to these findings, SHAP analysis revealed that fixation, saccade, and pupil-related features vary across techniques, indicating distinct patterns of visual attention and cognitive processing. Overall, we state that our method can facilitate hands-free locomotion in virtual spaces, especially in supporting accessibility.
Related papers
- VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications [2.5022287664959446]
This study introduces a pioneering approach utilizing Visual Language Models within VR environments to enhance user interaction and task efficiency.
Our system facilitates real-time, intuitive user interactions through natural language processing, without relying on visual text instructions.
arXiv Detail & Related papers (2024-05-19T12:56:00Z) - Tremor Reduction for Accessible Ray Based Interaction in VR Applications [0.0]
Many traditional 2D interface interaction methods have been directly converted to work in a VR space with little alteration to the input mechanism.
In this paper we propose the use of a low pass filter, to normalize user input noise, alleviating fine motor requirements during ray-based interaction.
arXiv Detail & Related papers (2024-05-12T17:07:16Z) - CALM: Conditional Adversarial Latent Models for Directable Virtual
Characters [71.66218592749448]
We present Conditional Adversarial Latent Models (CALM), an approach for generating diverse and directable behaviors for user-controlled interactive virtual characters.
Using imitation learning, CALM learns a representation of movement that captures the complexity of human motion, and enables direct control over character movements.
arXiv Detail & Related papers (2023-05-02T09:01:44Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
We design a learning-based neural interface for natural and intuitive force inputs in VR/AR.
We show that our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration.
We envision our findings to push forward research towards more realistic physicality in future VR/AR.
arXiv Detail & Related papers (2022-10-03T20:51:25Z) - The Gesture Authoring Space: Authoring Customised Hand Gestures for
Grasping Virtual Objects in Immersive Virtual Environments [81.5101473684021]
This work proposes a hand gesture authoring tool for object specific grab gestures allowing virtual objects to be grabbed as in the real world.
The presented solution uses template matching for gesture recognition and requires no technical knowledge to design and create custom tailored hand gestures.
The study showed that gestures created with the proposed approach are perceived by users as a more natural input modality than the others.
arXiv Detail & Related papers (2022-07-03T18:33:33Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
Some of the most promising methods are gesture-based and do not require additional handheld hardware.
Recent work focused mostly on user preference and performance of the different locomotion techniques.
This work is investigated whether and how quickly users can adapt to a hand gesture-based locomotion system in VR.
arXiv Detail & Related papers (2022-06-16T10:44:16Z) - Improving Generalization of Transfer Learning Across Domains Using
Spatio-Temporal Features in Autonomous Driving [45.655433907239804]
Vehicle simulation can be used to learn in the virtual world, and the acquired skills can be transferred to handle real-world scenarios.
These visual elements are intuitively crucial for human decision making during driving.
We propose a CNN+LSTM transfer learning framework to extract thetemporal-temporal features representing vehicle dynamics from scenes.
arXiv Detail & Related papers (2021-03-15T03:26:06Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
We propose a learning-based navigation system for reaching visually indicated goals.
We show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning.
We demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection.
arXiv Detail & Related papers (2020-12-17T18:22:32Z) - Building Trust in Autonomous Vehicles: Role of Virtual Reality Driving
Simulators in HMI Design [8.39368916644651]
We propose a methodology to validate the user experience in AVs based on continuous, objective information gathered from physiological signals.
We applied this methodology to the design of a head-up display interface delivering visual cues about the vehicle's sensory and planning systems.
arXiv Detail & Related papers (2020-07-27T08:42:07Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.