3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models
- URL: http://arxiv.org/abs/2504.17414v1
- Date: Thu, 24 Apr 2025 10:12:40 GMT
- Title: 3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models
- Authors: Min Wei, Chaohui Yu, Jingkai Zhou, Fan Wang,
- Abstract summary: 3DV-TON is a novel framework for generating high-fidelity and temporally consistent video try-on results.<n>Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance.<n>To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios.
- Score: 12.949009540192389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video try-on replaces clothing in videos with target garments. Existing methods struggle to generate high-quality and temporally consistent results when handling complex clothing patterns and diverse body poses. We present 3DV-TON, a novel diffusion-based framework for generating high-fidelity and temporally consistent video try-on results. Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance, alleviating the issue of models over-focusing on appearance fidelity at the expanse of motion coherence. This is achieved by enabling direct reference to consistent garment texture movements throughout video sequences. The proposed method features an adaptive pipeline for generating dynamic 3D guidance: (1) selecting a keyframe for initial 2D image try-on, followed by (2) reconstructing and animating a textured 3D mesh synchronized with original video poses. We further introduce a robust rectangular masking strategy that successfully mitigates artifact propagation caused by leaking clothing information during dynamic human and garment movements. To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios. Quantitative and qualitative results demonstrate our superior performance over existing methods. The project page is at this link https://2y7c3.github.io/3DV-TON/
Related papers
- I2V3D: Controllable image-to-video generation with 3D guidance [42.23117201457898]
IV23D is a framework for animating static images into dynamic videos with precise 3D control.<n>Our approach combines the precision of a computer graphics pipeline with advanced generative models.
arXiv Detail & Related papers (2025-03-12T18:26:34Z) - LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.
Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.
We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - DreamDance: Animating Human Images by Enriching 3D Geometry Cues from 2D Poses [57.17501809717155]
We present DreamDance, a novel method for animating human images using only skeleton pose sequences as conditional inputs.
Our key insight is that human images naturally exhibit multiple levels of correlation.
We construct the TikTok-Dance5K dataset, comprising 5K high-quality dance videos with detailed frame annotations.
arXiv Detail & Related papers (2024-11-30T08:42:13Z) - Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models [54.35214051961381]
3D meshes are widely used in computer vision and graphics for their efficiency in animation and minimal memory use in movies, games, AR, and VR.
However, creating temporal consistent and realistic textures for mesh remains labor-intensive for professional artists.
We present 3D Tex sequences that integrates inherent geometry from mesh sequences with video diffusion models to produce consistent textures.
arXiv Detail & Related papers (2024-10-14T17:59:59Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos.
Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions.
We reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion.
Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach.
arXiv Detail & Related papers (2024-07-15T11:21:03Z) - Enhancing Temporal Consistency in Video Editing by Reconstructing Videos with 3D Gaussian Splatting [94.84688557937123]
Video-3DGS is a 3D Gaussian Splatting (3DGS)-based video refiner designed to enhance temporal consistency in zero-shot video editors.<n>Our approach utilizes a two-stage 3D Gaussian optimizing process tailored for editing dynamic monocular videos.<n>It enhances video editing by ensuring temporal consistency across 58 dynamic monocular videos.
arXiv Detail & Related papers (2024-06-04T17:57:37Z) - ViViD: Video Virtual Try-on using Diffusion Models [46.710863047471264]
Video virtual try-on aims to transfer a clothing item onto the video of a target person.
Previous video-based try-on solutions can only generate low visual quality and blurring results.
We present ViViD, a novel framework employing powerful diffusion models to tackle the task of video virtual try-on.
arXiv Detail & Related papers (2024-05-20T05:28:22Z) - Text-To-4D Dynamic Scene Generation [111.89517759596345]
We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions.
Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency.
The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment.
arXiv Detail & Related papers (2023-01-26T18:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.