A Systematic Study on the Design of Odd-Sized Highly Nonlinear Boolean Functions via Evolutionary Algorithms
- URL: http://arxiv.org/abs/2504.17666v1
- Date: Thu, 24 Apr 2025 15:35:53 GMT
- Title: A Systematic Study on the Design of Odd-Sized Highly Nonlinear Boolean Functions via Evolutionary Algorithms
- Authors: Claude Carlet, Marko Äurasevic, Domagoj Jakobovic, Stjepan Picek, Luca Mariot,
- Abstract summary: We show that genetic programming generally outperforms other evolutionary algorithms.<n>We show that a symmetric genetic algorithm with the bitstring encoding manages to evolve a $9$-variable Boolean function with nonlinearity 241.
- Score: 32.90791284928444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the problem of evolving Boolean functions of odd sizes with high nonlinearity, a property of cryptographic relevance. Despite its simple formulation, this problem turns out to be remarkably difficult. We perform a systematic evaluation by considering three solution encodings and four problem instances, analyzing how well different types of evolutionary algorithms behave in finding a maximally nonlinear Boolean function. Our results show that genetic programming generally outperforms other evolutionary algorithms, although it falls short of the best-known results achieved by ad-hoc heuristics. Interestingly, by adding local search and restricting the space to rotation symmetric Boolean functions, we show that a genetic algorithm with the bitstring encoding manages to evolve a $9$-variable Boolean function with nonlinearity 241.
Related papers
- Degree is Important: On Evolving Homogeneous Boolean Functions [32.90791284928444]
This paper investigates the use of Evolutionary Algorithms to design homogeneous bent Boolean functions.<n>While EAs manage to find quadratic homogeneous bent functions, none of the approaches result in cubic homogeneous bent functions.
arXiv Detail & Related papers (2025-01-30T15:04:14Z) - A Systematic Evaluation of Evolving Highly Nonlinear Boolean Functions
in Odd Sizes [35.305121158674964]
We consider the problem of evolving highly nonlinear Boolean functions in odd sizes.
Finding optimal solutions is impossible except for the smallest tested size.
We find a Boolean function in nine inputs with nonlinearity 241.
arXiv Detail & Related papers (2024-02-15T13:39:34Z) - Digging Deeper: Operator Analysis for Optimizing Nonlinearity of Boolean
Functions [8.382710169577447]
We investigate the effects of genetic operators for bit-string encoding in optimizing nonlinearity.
By observing the range of possible changes an operator can provide, one can use this information to design a more effective combination of genetic operators.
arXiv Detail & Related papers (2023-02-12T10:34:01Z) - Evolving Constructions for Balanced, Highly Nonlinear Boolean Functions [37.84234862910533]
We show that genetic programming can evolve constructions resulting in balanced Boolean functions with high nonlinearity.
Our results show that GP can find constructions that generalize well, i.e., result in the required functions for multiple tested sizes.
Interestingly, the simplest solution found by GP is a particular case of the well-known indirect sum construction.
arXiv Detail & Related papers (2022-02-17T16:33:24Z) - Evolutionary Construction of Perfectly Balanced Boolean Functions [7.673465837624365]
We investigate the use of Genetic Programming (GP) and Genetic Algorithms (GA) to construct Boolean functions that satisfy a property, perfect balancedness, along with a good nonlinearity profile.
Surprisingly, the results show that GA with the weightwise balanced representation outperforms GP with the classical truth table phenotype in finding highly nonlinear WPB functions.
arXiv Detail & Related papers (2022-02-16T18:03:04Z) - Optimal Gradient-based Algorithms for Non-concave Bandit Optimization [76.57464214864756]
This work considers a large family of bandit problems where the unknown underlying reward function is non-concave.
Our algorithms are based on a unified zeroth-order optimization paradigm that applies in great generality.
We show that the standard optimistic algorithms are sub-optimal by dimension factors.
arXiv Detail & Related papers (2021-07-09T16:04:24Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Hardness of Random Optimization Problems for Boolean Circuits,
Low-Degree Polynomials, and Langevin Dynamics [78.46689176407936]
We show that families of algorithms fail to produce nearly optimal solutions with high probability.
For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory.
arXiv Detail & Related papers (2020-04-25T05:45:59Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.