Revisiting Reset Mechanisms in Spiking Neural Networks for Sequential Modeling: Specialized Discretization for Binary Activated RNN
- URL: http://arxiv.org/abs/2504.17751v3
- Date: Tue, 29 Apr 2025 18:43:45 GMT
- Title: Revisiting Reset Mechanisms in Spiking Neural Networks for Sequential Modeling: Specialized Discretization for Binary Activated RNN
- Authors: Enqi Zhang,
- Abstract summary: spiking neural networks (SNNs) have achieved performance comparable to conventional artificial neural networks (ANNs)<n>This article focuses on an another alternative perspective,viewing SNNs as binary-activated recurrent neural networks (RNNs) for sequential modeling tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of image recognition, spiking neural networks (SNNs) have achieved performance comparable to conventional artificial neural networks (ANNs). In such applications, SNNs essentially function as traditional neural networks with quantized activation values. This article focuses on an another alternative perspective,viewing SNNs as binary-activated recurrent neural networks (RNNs) for sequential modeling tasks. From this viewpoint, current SNN architectures face several fundamental challenges in sequence modeling: (1) Traditional models lack effective memory mechanisms for long-range sequence modeling; (2) The biological-inspired components in SNNs (such as reset mechanisms and refractory period applications) remain theoretically under-explored for sequence tasks; (3) The RNN-like computational paradigm in SNNs prevents parallel training across different timesteps. To address these challenges, this study conducts a systematic analysis of the fundamental mechanisms underlying reset operations and refractory periods in binary-activated RNN-based SNN sequence models. We re-examine whether such biological mechanisms are strictly necessary for generating sparse spiking patterns, provide new theoretical explanations and insights, and ultimately propose the fixed-refractory-period SNN architecture for sequence modeling.
Related papers
- A Recurrent Spiking Network with Hierarchical Intrinsic Excitability Modulation for Schema Learning [20.722060005437353]
Current research in neural computation is largely constrained to a single behavioral paradigm.
We propose a new model using recurrent spiking neural networks with hierarchical intrinsic excitability modulation (HM-RSNNs)
HM-RSNNs significantly outperform RSNN baselines across all tasks and exceed RNNs in three novel cognitive tasks.
arXiv Detail & Related papers (2025-01-24T14:45:03Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.<n>We reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.<n>Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - Learning Long Sequences in Spiking Neural Networks [0.0]
Spiking neural networks (SNNs) take inspiration from the brain to enable energy-efficient computations.
Recent interest in efficient alternatives to Transformers has given rise to state-of-the-art recurrent architectures named state space models (SSMs)
arXiv Detail & Related papers (2023-12-14T13:30:27Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Spiking Neural Networks -- Part I: Detecting Spatial Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) are biologically inspired machine learning models that build on dynamic neuronal models processing binary and sparse spiking signals in an event-driven, online, fashion.
SNNs can be implemented on neuromorphic computing platforms that are emerging as energy-efficient co-processors for learning and inference.
arXiv Detail & Related papers (2020-10-27T11:37:22Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.