Modes of Sequence Models and Learning Coefficients
- URL: http://arxiv.org/abs/2504.18048v1
- Date: Fri, 25 Apr 2025 03:38:10 GMT
- Title: Modes of Sequence Models and Learning Coefficients
- Authors: Zhongtian Chen, Daniel Murfet,
- Abstract summary: We develop a geometric account of sequence modelling that links patterns in the data to measurable properties of the loss landscape in transformer networks.<n>We show theoretically that Local Learning Coefficient estimates are insensitive to modes below a data-dependent threshold.<n>This insight clarifies why reliable LLC estimates can be obtained even when a network parameter is not a strict minimiser of the population loss.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a geometric account of sequence modelling that links patterns in the data to measurable properties of the loss landscape in transformer networks. First, we cast conditional sequence distributions into a Hilbert-space framework and apply tensor decompositions to identify their principal modes. Truncating the small-amplitude modes yields an effective data distribution that preserves dominant structure while discarding statistical detail. Second, we show theoretically that Local Learning Coefficient (LLC) estimates are insensitive to modes below a data-dependent threshold. Consequently, the LLC calculated in practice characterises the geometry of the effective rather than the true distribution. This insight clarifies why reliable LLC estimates can be obtained even when a network parameter is not a strict minimiser of the population loss, and it highlights how the inverse temperature in SGLD acts as a resolution dial on the landscape structure.
Related papers
- Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
We present an inference framework for estimating regression coefficients in conditional mean models.
We develop an augmented inverse probability weighted (AIPW) method, employing regularized estimators for both propensity score (PS) and outcome regression (OR) models.
Our theoretical findings are verified through extensive simulation studies and a real-world data application.
arXiv Detail & Related papers (2024-06-20T00:34:54Z) - Efficient Generative Modeling via Penalized Optimal Transport Network [1.8079016557290342]
We propose a versatile deep generative model based on the marginally-penalized Wasserstein (MPW) distance.<n>Through the MPW distance, POTNet effectively leverages low-dimensional marginal information to guide the overall alignment of joint distributions.<n>We derive a non-asymptotic bound on the generalization error of the MPW loss and establish convergence rates of the generative distribution learned by POTNet.
arXiv Detail & Related papers (2024-02-16T05:27:05Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
Partition of unity networks (POU-Nets) have been shown capable of realizing algebraic convergence rates for regression and solution of PDEs.
We enrich POU-Nets with a Gaussian noise model to obtain a probabilistic generalization amenable to gradient-based generalizations of a maximum likelihood loss.
We provide benchmarks quantifying performance in high/low-dimensions, demonstrating that convergence rates depend only on the latent dimension of data within high-dimensional space.
arXiv Detail & Related papers (2021-07-07T08:02:00Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
Variational Autoencoder (VAE) and its variations are classic generative models by learning a low-dimensional latent representation to satisfy some prior distribution.
We propose to let the prior match the embedding distribution rather than imposing the latent variables to fit the prior.
arXiv Detail & Related papers (2020-09-23T09:33:24Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
Generative Adversarial Networks (GANs) have achieved a great success in unsupervised learning.
This paper provides approximation and statistical guarantees of GANs for the estimation of data distributions with densities in a H"older space.
arXiv Detail & Related papers (2020-02-10T16:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.