Dense Geometry Supervision for Underwater Depth Estimation
- URL: http://arxiv.org/abs/2504.18233v1
- Date: Fri, 25 Apr 2025 10:27:25 GMT
- Title: Dense Geometry Supervision for Underwater Depth Estimation
- Authors: Wenxiang Gua, Lin Qia,
- Abstract summary: This paper proposes a novel approach to address the existing challenges in monocular depth estimation methods for underwater environments.<n>We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation.<n>We introduce a texture-depth fusion module, which aims to effectively exploit and integrate depth information from texture cues.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of monocular depth estimation is continually evolving with the advent of numerous innovative models and extensions. However, research on monocular depth estimation methods specifically for underwater scenes remains limited, compounded by a scarcity of relevant data and methodological support. This paper proposes a novel approach to address the existing challenges in current monocular depth estimation methods for underwater environments. We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation to generate supervisory signals and corresponding enhanced underwater images. we introduces a texture-depth fusion module, designed according to the underwater optical imaging principles, which aims to effectively exploit and integrate depth information from texture cues. Experimental results on the FLSea dataset demonstrate that our approach significantly improves the accuracy and adaptability of models in underwater settings. This work offers a cost-effective solution for monocular underwater depth estimation and holds considerable promise for practical applications.
Related papers
- Multi-view Reconstruction via SfM-guided Monocular Depth Estimation [92.89227629434316]
We present a new method for multi-view geometric reconstruction.<n>We incorporate SfM information, a strong multi-view prior, into the depth estimation process.<n>Our method significantly improves the quality of depth estimation compared to previous monocular depth estimation works.
arXiv Detail & Related papers (2025-03-18T17:54:06Z) - Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
Existing methods for depth completion operate in tightly constrained settings.<n>Inspired by advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation.<n>Marigold-DC builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance.
arXiv Detail & Related papers (2024-12-18T00:06:41Z) - UMono: Physical Model Informed Hybrid CNN-Transformer Framework for Underwater Monocular Depth Estimation [5.596432047035205]
Underwater monocular depth estimation serves as the foundation for tasks such as 3D reconstruction of underwater scenes.
Existing methods fail to consider the unique characteristics of underwater environments.
In this paper, an end-to-end learning framework for underwater monocular depth estimation called UMono is presented.
arXiv Detail & Related papers (2024-07-25T07:52:11Z) - ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - A Physical Model-Guided Framework for Underwater Image Enhancement and Depth Estimation [19.204227769408725]
Existing underwater image enhancement approaches fail to accurately estimate imaging model parameters such as depth and veiling light.
We propose a model-guided framework for jointly training a Deep Degradation Model with any advanced UIE model.
Our framework achieves remarkable enhancement results across diverse underwater scenes.
arXiv Detail & Related papers (2024-07-05T03:10:13Z) - WaterMono: Teacher-Guided Anomaly Masking and Enhancement Boosting for Robust Underwater Self-Supervised Monocular Depth Estimation [4.909989222186828]
We propose WaterMono, a novel framework for depth estimation and image enhancement.
It incorporates the following key measures: (1) We present a Teacher-Guided Anomaly Mask to identify dynamic regions within the images; (2) We employ depth information combined with the Underwater Image Formation Model to generate enhanced images, which in turn contribute to the depth estimation task; and (3) We utilize a rotated distillation strategy to enhance the model's rotational robustness.
arXiv Detail & Related papers (2024-06-19T08:49:45Z) - Atlantis: Enabling Underwater Depth Estimation with Stable Diffusion [30.122666238416716]
We propose a novel pipeline for generating underwater images using accurate terrestrial depth data.
This approach facilitates the training of supervised models for underwater depth estimation.
We introduce a unique Depth2Underwater ControlNet, trained on specially prepared Underwater, Depth, Text data triplets.
arXiv Detail & Related papers (2023-12-19T08:56:33Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
We propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse predictions of monocular and stereo depth estimation networks for spike camera.
Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range.
In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K.
arXiv Detail & Related papers (2022-08-26T13:04:01Z) - Improving Depth Estimation using Location Information [0.0]
This paper improves the self-supervised deep learning techniques to perform accurate generalized monocular depth estimation.
The main idea is to train the deep model to take into account a sequence of the different frames, each frame is geotagged with its location information.
arXiv Detail & Related papers (2021-12-27T22:30:14Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.