TextTIGER: Text-based Intelligent Generation with Entity Prompt Refinement for Text-to-Image Generation
- URL: http://arxiv.org/abs/2504.18269v1
- Date: Fri, 25 Apr 2025 11:27:44 GMT
- Title: TextTIGER: Text-based Intelligent Generation with Entity Prompt Refinement for Text-to-Image Generation
- Authors: Shintaro Ozaki, Kazuki Hayashi, Yusuke Sakai, Jingun Kwon, Hidetaka Kamigaito, Katsuhiko Hayashi, Manabu Okumura, Taro Watanabe,
- Abstract summary: We propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER)<n>TextTIGER augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs)<n>Experiments show TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts.
- Score: 37.212823625296885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating images from prompts containing specific entities requires models to retain as much entity-specific knowledge as possible. However, fully memorizing such knowledge is impractical due to the vast number of entities and their continuous emergence. To address this, we propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER), which augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs) to mitigate performance degradation from longer inputs. To evaluate our method, we introduce WiT-Cub (WiT with Captions and Uncomplicated Background-explanations), a dataset comprising captions, images, and an entity list. Experiments on four image generation models and five LLMs show that TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts. Additionally, multiple annotators' evaluation confirms that the summarized descriptions are more informative, validating LLMs' ability to generate concise yet rich descriptions. These findings demonstrate that refining prompts with augmented and summarized entity-related descriptions enhances image generation capabilities. The code and dataset will be available upon acceptance.
Related papers
- LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification [63.07563443280147]
We propose a novel framework named LATex for AG-ReID.<n>It adopts prompt-tuning strategies to leverage attribute-based text knowledge.<n>Our framework can fully leverage attribute-based text knowledge to improve the AG-ReID.
arXiv Detail & Related papers (2025-03-31T04:47:05Z) - CLIP-SCGI: Synthesized Caption-Guided Inversion for Person Re-Identification [9.996589403019675]
Person re-identification (ReID) has recently benefited from large pretrained vision-language models such as Contrastive Language-Image Pre-Training (CLIP)
We propose one straightforward solution by leveraging existing image captioning models to generate pseudo captions for person images.
We introduce CLIP-SCGI, a framework that leverages synthesized captions to guide the learning of discriminative and robust representations.
arXiv Detail & Related papers (2024-10-12T06:24:33Z) - ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) is a novel multimodal data augmentation method via knowledge-guided manipulation of visual attributes.
ARMADA is a novel multimodal data generation framework that: (i) extracts knowledge-grounded attributes from symbolic KBs for semantically consistent yet distinctive image-text pair generation.
This also highlights the need to leverage external knowledge proxies for enhanced interpretability and real-world grounding.
arXiv Detail & Related papers (2024-08-19T15:27:25Z) - LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation [30.897935761304034]
We propose a novel framework called textbfLLM4GEN, which enhances the semantic understanding of text-to-image diffusion models.
A specially designed Cross-Adapter Module (CAM) integrates the original text features of text-to-image models with LLM features.
DensePrompts, which contains $7,000$ dense prompts, provides a comprehensive evaluation for the text-to-image generation task.
arXiv Detail & Related papers (2024-06-30T15:50:32Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
We introduce a novel diffusion-based framework to enhance the alignment of generated images with their corresponding descriptions.
Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image.
We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt.
arXiv Detail & Related papers (2024-06-24T06:12:16Z) - TIGeR: Unifying Text-to-Image Generation and Retrieval with Large Multimodal Models [96.72318842152148]
We propose a unified framework for text-to-image generation and retrieval with one single Large Multimodal Model (LMM)<n> Specifically, we first explore the intrinsic discriminative abilities of LMMs and introduce an efficient generative retrieval method for text-to-image retrieval in a training-free manner.<n>We then propose an autonomous decision mechanism to choose the best-matched one between generated and retrieved images as the response to the text prompt.
arXiv Detail & Related papers (2024-06-09T15:00:28Z) - Multi-Prompts Learning with Cross-Modal Alignment for Attribute-based
Person Re-Identification [18.01407937934588]
We present a new framework called Multi-Prompts ReID (MP-ReID) based on prompt learning and language models.
MP-ReID learns to hallucinate diverse, informative, and promptable sentences for describing the query images.
Explicit prompts are obtained by ensembling generation models, such as ChatGPT and VQA models.
arXiv Detail & Related papers (2023-12-28T03:00:19Z) - LLM Blueprint: Enabling Text-to-Image Generation with Complex and
Detailed Prompts [60.54912319612113]
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts.
We present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts.
Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models.
arXiv Detail & Related papers (2023-10-16T17:57:37Z) - Few-shot Action Recognition with Captioning Foundation Models [61.40271046233581]
CapFSAR is a framework to exploit knowledge of multimodal models without manually annotating text.
Visual-text aggregation module based on Transformer is further designed to incorporate cross-modal-temporal complementary information.
experiments on multiple standard few-shot benchmarks demonstrate that the proposed CapFSAR performs favorably against existing methods.
arXiv Detail & Related papers (2023-10-16T07:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.