Backdoor Defense in Diffusion Models via Spatial Attention Unlearning
- URL: http://arxiv.org/abs/2504.18563v1
- Date: Mon, 21 Apr 2025 04:00:19 GMT
- Title: Backdoor Defense in Diffusion Models via Spatial Attention Unlearning
- Authors: Abha Jha, Ashwath Vaithinathan Aravindan, Matthew Salaway, Atharva Sandeep Bhide, Duygu Nur Yaldiz,
- Abstract summary: Text-to-image diffusion models are increasingly vulnerable to backdoor attacks.<n>We propose Spatial Attention Unlearning (SAU), a novel technique for mitigating backdoor attacks in diffusion models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image diffusion models are increasingly vulnerable to backdoor attacks, where malicious modifications to the training data cause the model to generate unintended outputs when specific triggers are present. While classification models have seen extensive development of defense mechanisms, generative models remain largely unprotected due to their high-dimensional output space, which complicates the detection and mitigation of subtle perturbations. Defense strategies for diffusion models, in particular, remain under-explored. In this work, we propose Spatial Attention Unlearning (SAU), a novel technique for mitigating backdoor attacks in diffusion models. SAU leverages latent space manipulation and spatial attention mechanisms to isolate and remove the latent representation of backdoor triggers, ensuring precise and efficient removal of malicious effects. We evaluate SAU across various types of backdoor attacks, including pixel-based and style-based triggers, and demonstrate its effectiveness in achieving 100% trigger removal accuracy. Furthermore, SAU achieves a CLIP score of 0.7023, outperforming existing methods while preserving the model's ability to generate high-quality, semantically aligned images. Our results show that SAU is a robust, scalable, and practical solution for securing text-to-image diffusion models against backdoor attacks.
Related papers
- Embedding Hidden Adversarial Capabilities in Pre-Trained Diffusion Models [1.534667887016089]
We introduce a new attack paradigm that embeds hidden adversarial capabilities directly into diffusion models via fine-tuning.<n>The resulting tampered model generates high-quality images indistinguishable from those of the original.<n>We demonstrate the effectiveness and stealthiness of our approach, uncovering a covert attack vector that raises new security concerns.
arXiv Detail & Related papers (2025-04-05T12:51:36Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [63.50488826645681]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.<n>Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''<n>We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - DeTrigger: A Gradient-Centric Approach to Backdoor Attack Mitigation in Federated Learning [8.745529957589039]
Federated Learning (FL) enables collaborative model training across distributed devices while preserving local data privacy, making it ideal for mobile and embedded systems.<n>However, the decentralized nature of FL also opens vulnerabilities to model poisoning attacks, particularly backdoor attacks.<n>We propose DeTrigger, a scalable and efficient backdoor-robust federated learning framework.
arXiv Detail & Related papers (2024-11-19T04:12:14Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Invisible Backdoor Attacks on Diffusion Models [22.08671395877427]
Recent research has brought to light the vulnerability of diffusion models to backdoor attacks.
We present an innovative framework designed to acquire invisible triggers, enhancing the stealthiness and resilience of inserted backdoors.
arXiv Detail & Related papers (2024-06-02T17:43:19Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
We develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario.
Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios.
arXiv Detail & Related papers (2023-02-15T17:37:49Z) - How to Backdoor Diffusion Models? [74.43215520371506]
This paper presents the first study on the robustness of diffusion models against backdoor attacks.
We propose BadDiffusion, a novel attack framework that engineers compromised diffusion processes during model training for backdoor implantation.
Our results call attention to potential risks and possible misuse of diffusion models.
arXiv Detail & Related papers (2022-12-11T03:44:38Z) - Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive
Diffusion [70.60038549155485]
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving.
This paper introduces a novel distortion-aware defense framework that can rebuild the pristine data distribution with a tailored intensity estimator and a diffusion model.
arXiv Detail & Related papers (2022-11-29T14:32:43Z) - Threat Model-Agnostic Adversarial Defense using Diffusion Models [14.603209216642034]
Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious perturbations, known as adversarial attacks.
Deep Neural Networks (DNNs) are highly sensitive to imperceptible malicious perturbations, known as adversarial attacks.
arXiv Detail & Related papers (2022-07-17T06:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.