A Simple DropConnect Approach to Transfer-based Targeted Attack
- URL: http://arxiv.org/abs/2504.18594v1
- Date: Thu, 24 Apr 2025 12:29:23 GMT
- Title: A Simple DropConnect Approach to Transfer-based Targeted Attack
- Authors: Tongrui Su, Qingbin Li, Shengyu Zhu, Wei Chen, Xueqi Cheng,
- Abstract summary: We study the problem of transfer-based black-box attack, where adversarial samples generated using a single surrogate model are directly applied to target models.<n>We propose to Mitigate perturbation Co-adaptation by DropConnect to enhance transferability.<n>In the challenging scenario of transferring from a CNN-based model to Transformer-based models, MCD achieves 13% higher average ASRs compared with state-of-the-art baselines.
- Score: 43.039945949426546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of transfer-based black-box attack, where adversarial samples generated using a single surrogate model are directly applied to target models. Compared with untargeted attacks, existing methods still have lower Attack Success Rates (ASRs) in the targeted setting, i.e., the obtained adversarial examples often overfit the surrogate model but fail to mislead other models. In this paper, we hypothesize that the pixels or features in these adversarial examples collaborate in a highly dependent manner to maximize the success of an adversarial attack on the surrogate model, which we refer to as perturbation co-adaptation. Then, we propose to Mitigate perturbation Co-adaptation by DropConnect (MCD) to enhance transferability, by creating diverse variants of surrogate model at each optimization iteration. We conduct extensive experiments across various CNN- and Transformer-based models to demonstrate the effectiveness of MCD. In the challenging scenario of transferring from a CNN-based model to Transformer-based models, MCD achieves 13% higher average ASRs compared with state-of-the-art baselines. MCD boosts the performance of self-ensemble methods by bringing in more diversification across the variants while reserving sufficient semantic information for each variant. In addition, MCD attains the highest performance gain when scaling the compute of crafting adversarial examples.
Related papers
- Improving the Transferability of Adversarial Attacks on Face Recognition with Diverse Parameters Augmentation [29.5096732465412]
Face Recognition (FR) models are vulnerable to adversarial examples that subtly manipulate benign face images.<n>Existing adversarial attack methods often overlook the potential benefits of augmenting the surrogate model.<n>We propose a novel method called Diverse Parameters Augmentation (DPA) attack method.
arXiv Detail & Related papers (2024-11-23T13:22:37Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
We propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model.
We achieve considerable improvement over the existing ensemble attacks on various datasets.
arXiv Detail & Related papers (2023-08-05T15:12:36Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
We introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters.
Our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively.
arXiv Detail & Related papers (2023-07-21T03:43:07Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Training Meta-Surrogate Model for Transferable Adversarial Attack [98.13178217557193]
We consider adversarial attacks to a black-box model when no queries are allowed.
In this setting, many methods directly attack surrogate models and transfer the obtained adversarial examples to fool the target model.
We show we can obtain a Meta-Surrogate Model (MSM) such that attacks to this model can be easier transferred to other models.
arXiv Detail & Related papers (2021-09-05T03:27:46Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.