Toward Personalizing Quantum Computing Education: An Evolutionary LLM-Powered Approach
- URL: http://arxiv.org/abs/2504.18603v1
- Date: Thu, 24 Apr 2025 21:53:34 GMT
- Title: Toward Personalizing Quantum Computing Education: An Evolutionary LLM-Powered Approach
- Authors: Iizalaarab Elhaimeur, Nikos Chrisochoides,
- Abstract summary: This paper introduces a novel Intelligent Teaching Assistant for quantum computing education.<n>The system combines a knowledge-graph-augmented architecture with two specialized Large Language Model (LLM) agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing education faces significant challenges due to its complexity and the limitations of current tools; this paper introduces a novel Intelligent Teaching Assistant for quantum computing education and details its evolutionary design process. The system combines a knowledge-graph-augmented architecture with two specialized Large Language Model (LLM) agents: a Teaching Agent for dynamic interaction, and a Lesson Planning Agent for lesson plan generation. The system is designed to adapt to individual student needs, with interactions meticulously tracked and stored in a knowledge graph. This graph represents student actions, learning resources, and relationships, aiming to enable reasoning about effective learning pathways. We describe the implementation of the system, highlighting the challenges encountered and the solutions implemented, including introducing a dual-agent architecture where tasks are separated, all coordinated through a central knowledge graph that maintains system awareness, and a user-facing tag system intended to mitigate LLM hallucination and improve user control. Preliminary results illustrate the system's potential to capture rich interaction data, dynamically adapt lesson plans based on student feedback via a tag system in simulation, and facilitate context-aware tutoring through the integrated knowledge graph, though systematic evaluation is required.
Related papers
- Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.
In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.
By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Exploring Graph-based Knowledge: Multi-Level Feature Distillation via Channels Relational Graph [8.646512035461994]
In visual tasks, large teacher models capture essential features and deep information, enhancing performance.
We propose a distillation framework based on graph knowledge, including a multi-level feature alignment strategy.
We emphasize spectral embedding (SE) as a key technique in our distillation process, which merges the student's feature space with the relational knowledge and structural complexities similar to the teacher network.
arXiv Detail & Related papers (2024-05-14T12:37:05Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
We propose an automated framework for knowledge extraction, visual KG construction, and graph fusion for the major of Electronic Information.
Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI.
arXiv Detail & Related papers (2023-05-08T09:25:41Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - LENAS: Learning-based Neural Architecture Search and Ensemble for 3D Radiotherapy Dose Prediction [42.38793195337463]
We propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3D radiotherapy dose prediction.
Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance.
To mitigate the complexity introduced by the model ensemble, we adopt the teacher-student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals.
arXiv Detail & Related papers (2021-06-12T10:08:52Z) - Automated Relational Meta-learning [95.02216511235191]
We propose an automated relational meta-learning framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph.
We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.
arXiv Detail & Related papers (2020-01-03T07:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.