Exploring the Potential of Latent Embeddings for Sea Ice Characterization using ICESat-2 Data
- URL: http://arxiv.org/abs/2504.18668v1
- Date: Fri, 25 Apr 2025 19:42:09 GMT
- Title: Exploring the Potential of Latent Embeddings for Sea Ice Characterization using ICESat-2 Data
- Authors: Daehyeon Han, Morteza Karimzadeh,
- Abstract summary: Ice, Cloud, and Elevation Satellite-2 (ICESat-2) provides high-resolution measurements of sea ice height.<n>Recent studies have developed machine learning methods on ICESat-2 data, primarily focusing on surface type classification.<n>We develop autoencoder models based on Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) to reconstruct topographic sequences from ICESat-2 and derive embeddings.<n>Our results show that embeddings from autoencoders preserve the overall structure but generate relatively more compact clusters compared to the original ICESat-2 data.
- Score: 1.4364491422470593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Ice, Cloud, and Elevation Satellite-2 (ICESat-2) provides high-resolution measurements of sea ice height. Recent studies have developed machine learning methods on ICESat-2 data, primarily focusing on surface type classification. However, the heavy reliance on manually collected labels requires significant time and effort for supervised learning, as it involves cross-referencing track measurements with overlapping background optical imagery. Additionally, the coincidence of ICESat-2 tracks with background images is relatively rare due to the different overpass patterns and atmospheric conditions. To address these limitations, this study explores the potential of unsupervised autoencoder on unlabeled data to derive latent embeddings. We develop autoencoder models based on Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) to reconstruct topographic sequences from ICESat-2 and derive embeddings. We then apply Uniform Manifold Approximation and Projection (UMAP) to reduce dimensions and visualize the embeddings. Our results show that embeddings from autoencoders preserve the overall structure but generate relatively more compact clusters compared to the original ICESat-2 data, indicating the potential of embeddings to lessen the number of required labels samples.
Related papers
- Distilling Monocular Foundation Model for Fine-grained Depth Completion [17.603217168518356]
We propose a two-stage knowledge distillation framework to provide dense supervision for depth completion.<n>In the first stage, we generate diverse training data from natural images, which distills geometric knowledge to depth completion.<n>In the second stage, we employ a scale- and shift-invariant loss to learn real-world scales when fine-tuning on real-world datasets.
arXiv Detail & Related papers (2025-03-21T09:34:01Z) - SpecDM: Hyperspectral Dataset Synthesis with Pixel-level Semantic Annotations [27.391859339238906]
In this paper, we explore the potential of generative diffusion model in synthesizing hyperspectral images with pixel-level annotations.<n>To the best of our knowledge, it is the first work to generate high-dimensional HSIs with annotations.<n>We select two of the most widely used dense prediction tasks: semantic segmentation and change detection, and generate datasets suitable for these tasks.
arXiv Detail & Related papers (2025-02-24T11:13:37Z) - TopoFormer: Integrating Transformers and ConvLSTMs for Coastal Topography Prediction [0.0]
textitTopoFormer integrates transformer-based encoders with convolutional long short-term memory layers.<n>The architecture captures both long-range dependencies and localized temporal patterns inherent in beach profiles data.
arXiv Detail & Related papers (2025-01-11T09:46:02Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
We propose an image-guidance network (IGNet) which builds upon the idea of distilling high level feature information from a domain adapted synthetically trained 2D semantic segmentation network.
IGNet achieves state-of-the-art results for weakly-supervised LiDAR semantic segmentation on ScribbleKITTI, boasting up to 98% relative performance to fully supervised training with only 8% labeled points.
arXiv Detail & Related papers (2023-11-27T07:57:29Z) - Dual-stream contrastive predictive network with joint handcrafted
feature view for SAR ship classification [9.251342335645765]
We propose a novel dual-stream contrastive predictive network (DCPNet)
The first task is to construct positive sample pairs, guiding the core encoder to learn more general representations.
The second task is to encourage adaptive capture of the correspondence between deep features and handcrated features, achieving knowledge transfer within the model, and effectively improving the redundancy caused by the feature fusion.
arXiv Detail & Related papers (2023-11-26T05:47:01Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
We present EHSOD, an end-to-end hybrid-supervised object detection system.
It can be trained in one shot on both fully and weakly-annotated data.
It achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data.
arXiv Detail & Related papers (2020-02-18T08:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.