Technical Challenges in Maintaining Tax Prep Software with Large Language Models
- URL: http://arxiv.org/abs/2504.18693v1
- Date: Fri, 25 Apr 2025 21:00:20 GMT
- Title: Technical Challenges in Maintaining Tax Prep Software with Large Language Models
- Authors: Sina Gogani-Khiabani, Varsha Dewangan, Nina Olson, Ashutosh Trivedi, Saeid Tizpaz-Niari,
- Abstract summary: We focus on identifying, understanding, and tackling technical challenges in leveraging Large Language Models (LLMs)<n>Our research efforts focus on identifying, understanding, and tackling technical challenges in leveraging ChatGPT and Llama to faithfully extract code differentials from IRS publications.
- Score: 6.419602857618507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the US tax law evolves to adapt to ever-changing politico-economic realities, tax preparation software plays a significant role in helping taxpayers navigate these complexities. The dynamic nature of tax regulations poses a significant challenge to accurately and timely maintaining tax software artifacts. The state-of-the-art in maintaining tax prep software is time-consuming and error-prone as it involves manual code analysis combined with an expert interpretation of tax law amendments. We posit that the rigor and formality of tax amendment language, as expressed in IRS publications, makes it amenable to automatic translation to executable specifications (code). Our research efforts focus on identifying, understanding, and tackling technical challenges in leveraging Large Language Models (LLMs), such as ChatGPT and Llama, to faithfully extract code differentials from IRS publications and automatically integrate them with the prior version of the code to automate tax prep software maintenance.
Related papers
- Relating Answer Set Programming and Many-sorted Logics for Formal Verification [1.223779595809275]
My research agenda has been focused on addressing three issues with the intention of making ASP verification an accessible, routine task.
I have investigated alternative semantics for ASP based on translations into the logic of here-and-there and many-sorted first-order logic.
These semantics promote a modular understanding of logic programs, bypass grounding, and enable us to use automated theorem provers to automatically verify properties of programs.
arXiv Detail & Related papers (2025-02-13T11:52:40Z) - Metamorphic Debugging for Accountable Software [8.001739956625483]
Translating legalese into formal specifications is one challenge.
Lack of a definitive 'truth' for queries (the oracle problem) is another.
We propose that these challenges can be tackled by focusing on relational specifications.
arXiv Detail & Related papers (2024-09-24T14:45:13Z) - A Taxation Perspective for Fair Re-ranking [61.946428892727795]
We introduce a new fair re-ranking method named Tax-rank, which levies taxes based on the difference in utility between two items.
Our model Tax-rank offers a superior tax policy for fair re-ranking, theoretically demonstrating both continuity and controllability over accuracy loss.
arXiv Detail & Related papers (2024-04-27T08:21:29Z) - NExT: Teaching Large Language Models to Reason about Code Execution [50.93581376646064]
Large language models (LLMs) of code are typically trained on the surface textual form of programs.
We propose NExT, a method to teach LLMs to inspect the execution traces of programs and reason about their run-time behavior.
arXiv Detail & Related papers (2024-04-23T01:46:32Z) - Learning Optimal Tax Design in Nonatomic Congestion Games [56.85292809260111]
In multiplayer games, self-interested behavior among the players can harm the social welfare.<n>We take the initial step of learning the optimal tax that can induce social welfare with limited feedback in congestion games.
arXiv Detail & Related papers (2024-02-12T06:32:53Z) - On the Potential and Limitations of Few-Shot In-Context Learning to
Generate Metamorphic Specifications for Tax Preparation Software [12.071874385139395]
Nearly 50% of taxpayers filed their individual income taxes using tax software in the U.S. in FY22.
This paper formulates the task of generating metamorphic specifications as a translation task between properties extracted from tax documents.
arXiv Detail & Related papers (2023-11-20T18:12:28Z) - Guess & Sketch: Language Model Guided Transpilation [59.02147255276078]
Learned transpilation offers an alternative to manual re-writing and engineering efforts.
Probabilistic neural language models (LMs) produce plausible outputs for every input, but do so at the cost of guaranteed correctness.
Guess & Sketch extracts alignment and confidence information from features of the LM then passes it to a symbolic solver to resolve semantic equivalence.
arXiv Detail & Related papers (2023-09-25T15:42:18Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
This study examines issues of algorithmic fairness in the context of systems that inform tax audit selection by the IRS.
We show how the use of more flexible machine learning methods for selecting audits may affect vertical equity.
Our results have implications for the design of algorithmic tools across the public sector.
arXiv Detail & Related papers (2022-06-20T16:27:06Z) - Metamorphic Testing and Debugging of Tax Preparation Software [2.185694185279913]
We focus on an open-source tax preparation software for our case study.
We develop a randomized test-case generation strategy to systematically validate the correctness of tax preparation software.
arXiv Detail & Related papers (2022-05-10T16:10:10Z) - Tax Knowledge Graph for a Smarter and More Personalized TurboTax [0.0]
We will share our innovative and practical approach to representing complicated U.S. and Canadian income tax compliance logic via a large-scale knowledge graph.
We will cover how the Tax Knowledge Graph is constructed and automated, how it is used to calculate tax refunds, reasoned to find missing info, and navigated to explain the calculated results.
arXiv Detail & Related papers (2020-09-13T22:41:01Z) - The AI Economist: Improving Equality and Productivity with AI-Driven Tax
Policies [119.07163415116686]
We train social planners that discover tax policies that can effectively trade-off economic equality and productivity.
We present an economic simulation environment that features competitive pressures and market dynamics.
We show that AI-driven tax policies improve the trade-off between equality and productivity by 16% over baseline policies.
arXiv Detail & Related papers (2020-04-28T06:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.