Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
- URL: http://arxiv.org/abs/2504.18720v1
- Date: Fri, 25 Apr 2025 22:14:29 GMT
- Title: Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
- Authors: Gérôme Andry, François Rozet, Sacha Lewin, Omer Rochman, Victor Mangeleer, Matthias Pirlet, Elise Faulx, Marilaure Grégoire, Gilles Louppe,
- Abstract summary: Appa is a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals.<n>Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
- Score: 4.430758443755128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has transformed weather forecasting by improving both its accuracy and computational efficiency. However, before any forecast can begin, weather centers must identify the current atmospheric state from vast amounts of observational data. To address this challenging problem, we introduce Appa, a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals. Powered by a 1.5B-parameter spatio-temporal latent diffusion model trained on ERA5 reanalysis data, Appa can be conditioned on any type of observations to infer the posterior distribution of plausible state trajectories, without retraining. Our unified probabilistic framework flexibly tackles multiple inference tasks -- reanalysis, filtering, and forecasting -- using the same model, eliminating the need for task-specific architectures or training procedures. Experiments demonstrate physical consistency on a global scale and good reconstructions from observations, while showing competitive forecasting skills. Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - A Benchmark for AI-based Weather Data Assimilation [10.100157158477145]
We propose DABench, a benchmark constructed by simulated observations, real-world observations, and ERA5 reanalysis.
Our experimental results demonstrate that the end-to-end weather forecasting system, integrating 4DVarFormerV2 and Sformer, can assimilate real-world observations.
The proposed DABench will significantly advance research in AI-based DA, AI-based weather forecasting, and related domains.
arXiv Detail & Related papers (2024-08-21T08:50:19Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - DiffDA: a Diffusion Model for Weather-scale Data Assimilation [19.336483240566142]
We propose DiffDA as a denoising diffusion model capable of assimilating atmospheric variables using predicted states and sparse observations.
Acknowledging the similarity between a weather forecast model and a denoising diffusion model dedicated to weather applications, we adapt the pretrained GraphCast neural network as the backbone of the diffusion model.
arXiv Detail & Related papers (2024-01-11T14:11:12Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.