High-order Graph Neural Networks with Common Neighbor Awareness for Link Prediction
- URL: http://arxiv.org/abs/2504.18758v1
- Date: Sat, 26 Apr 2025 01:20:07 GMT
- Title: High-order Graph Neural Networks with Common Neighbor Awareness for Link Prediction
- Authors: Ling Wang, Minglian Han,
- Abstract summary: Link prediction is a fundamental task in dynamic graph learning (DGL)<n>Recent advancements in dynamic graph neural networks (DGNN) have significantly improved link prediction performance.<n>We propose a High-order Graph Neural Networks with Common Neighbor Awareness (HGNN-CNA) for link prediction with two-fold ideas.
- Score: 5.113525357988675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction is a fundamental task in dynamic graph learning (DGL), inherently shaped by the topology of the DG. Recent advancements in dynamic graph neural networks (DGNN), primarily by modeling the relationships among nodes via a message passing scheme, have significantly improved link prediction performance. However, DGNNs heavily rely on the pairwise node interactions, which neglect the common neighbor interaction in DGL. To address this limitation, we propose a High-order Graph Neural Networks with Common Neighbor Awareness (HGNN-CNA) for link prediction with two-fold ideas: a) estimating correlation score by considering multi-hop common neighbors for capturing the complex interaction between nodes; b) fusing the correlation into the message-passing process to consider common neighbor interaction directly in DGL. Experimental results on three real DGs demonstrate that the proposed HGNN-CNA acquires a significant accuracy gain over several state-of-the-art models on the link prediction task.
Related papers
- Can GNNs Learn Link Heuristics? A Concise Review and Evaluation of Link Prediction Methods [16.428742189544955]
This paper explores the ability of Graph Neural Networks (GNNs) in learning various forms of information for link prediction.
Our analysis reveals that GNNs cannot effectively learn structural information related to the number of common neighbors between two nodes.
Also, our extensive experiments indicate that trainable node embeddings can improve the performance of GNN-based link prediction models.
arXiv Detail & Related papers (2024-11-22T03:38:20Z) - PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
We introduce PROXI, which leverages proximity information of node pairs in both graph and attribute spaces.
Standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models.
We show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes)
We develop a unified framework, termed as Signed Infomax Hyperbolic Graph (textbfSIHG)
In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion.
arXiv Detail & Related papers (2020-11-25T05:09:03Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks [70.64925872964416]
We present SkipGNN, a graph neural network approach for the prediction of molecular interactions.
SkipGNN predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions.
We show that SkipGNN achieves superior and robust performance, outperforming existing methods by up to 28.8% of area.
arXiv Detail & Related papers (2020-04-30T16:55:58Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.