ThinkFL: Self-Refining Failure Localization for Microservice Systems via Reinforcement Fine-Tuning
- URL: http://arxiv.org/abs/2504.18776v1
- Date: Sat, 26 Apr 2025 03:08:30 GMT
- Title: ThinkFL: Self-Refining Failure Localization for Microservice Systems via Reinforcement Fine-Tuning
- Authors: Lingzhe Zhang, Yunpeng Zhai, Tong Jia, Chiming Duan, Siyu Yu, Jinyang Gao, Bolin Ding, Zhonghai Wu, Ying Li,
- Abstract summary: Traditional failure localization approaches based on small models lack the flexibility to adapt to diverse failure scenarios.<n>We propose a progressive multi-stage GRPO fine-tuning framework, which integrates a multi-factor failure localization and a recursion-of-thought actor module.<n>The resulting model, ThinkFL, outperforms existing state-of-the-art LLMs and baseline methods in localization accuracy but also reduces end-to-end localization latency from minutes to seconds.
- Score: 31.89194823470957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As modern microservice systems grow increasingly popular and complex-often consisting of hundreds or even thousands of fine-grained, interdependent components-they are becoming more susceptible to frequent and subtle failures. Ensuring system reliability therefore hinges on accurate and efficient failure localization. Traditional failure localization approaches based on small models lack the flexibility to adapt to diverse failure scenarios, while recent LLM-based methods suffer from two major limitations: they often rely on rigid invocation workflows that constrain the model's ability to dynamically explore optimal localization paths, and they require resource-intensive inference, making them cost-prohibitive for real-world deployment. To address these challenges, we explore the use of reinforcement fine-tuning to equip lightweight LLMs with reasoning and self-refinement capabilities, significantly improving the cost-effectiveness and adaptability of LLM-based failure localization. We begin with an empirical study to identify three key capabilities essential for accurate localization. Building on these insights, we propose a progressive multi-stage GRPO fine-tuning framework, which integrates a multi-factor failure localization grader and a recursion-of-thought actor module. The resulting model, ThinkFL, not only outperforms existing state-of-the-art LLMs and baseline methods in localization accuracy but also reduces end-to-end localization latency from minutes to seconds, demonstrating strong potential for real-world applications.
Related papers
- The Multi-Agent Fault Localization System Based on Monte Carlo Tree Search Approach [2.4898626838193647]
Large language model (LLM) provides a new path for quickly locating and recovering from incidents.<n>Our method achieves a 49.29% to 128.35% improvement in root cause localization accuracy.
arXiv Detail & Related papers (2025-07-30T16:03:21Z) - Federated Learning-Enabled Hybrid Language Models for Communication-Efficient Token Transmission [87.68447072141402]
Hybrid Language Models (HLMs) combine the low-latency efficiency of Small Language Models (SLMs) on edge devices with the high accuracy of Large Language Models (LLMs) on centralized servers.<n>We propose FedHLM, a communication-efficient HLM framework that integrates uncertainty-aware inference with Federated Learning (FL)
arXiv Detail & Related papers (2025-06-30T02:56:11Z) - MLLM-CL: Continual Learning for Multimodal Large Language Models [62.90736445575181]
We introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning.<n>Our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods.
arXiv Detail & Related papers (2025-06-05T17:58:13Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents [6.318292471845427]
We develop the queuing fundamentals for large language model (LLM) inference.<n>We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput.
arXiv Detail & Related papers (2025-04-10T00:12:12Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.<n>Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - GUIDE: A Global Unified Inference Engine for Deploying Large Language Models in Heterogeneous Environments [1.0558515062670693]
Large language models (LLMs) in real-world scenarios remains a critical challenge.
These challenges often lead to inefficiencies in memory utilization, latency, and throughput.
We develop a framework to address these issues, achieving prediction errors between 9.9% and 42.3% for key metrics such as batch latency, TTFT, and decode throughput.
arXiv Detail & Related papers (2024-12-06T05:46:43Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.<n>Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.<n>We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLM is a novel framework designed to enable the instant derivation of large language models of arbitrary shapes.
AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications.
arXiv Detail & Related papers (2024-11-15T22:02:28Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - A Multi-Agent Approach to Fault Localization via Graph-Based Retrieval and Reflexion [8.22737389683156]
Traditional fault localization techniques require extensive training datasets and high computational resources.<n>Recent advances in Large Language Models (LLMs) offer new opportunities by enhancing code understanding and reasoning.<n>We propose LLM4FL, a multi-agent fault localization framework that utilizes three specialized LLM agents.<n> evaluated on the Defects4J benchmark, which includes 675 faults from 14 Java projects, LLM4FL achieves an 18.55% improvement in Top-1 accuracy over AutoFL and 4.82% over SoapFL.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.