Towards Robust Dialogue Breakdown Detection: Addressing Disruptors in Large Language Models with Self-Guided Reasoning
- URL: http://arxiv.org/abs/2504.18839v1
- Date: Sat, 26 Apr 2025 07:51:05 GMT
- Title: Towards Robust Dialogue Breakdown Detection: Addressing Disruptors in Large Language Models with Self-Guided Reasoning
- Authors: Abdellah Ghassel, Xianzhi Li, Xiaodan Zhu,
- Abstract summary: Large language models (LLMs) are rapidly changing various domains.<n>This paper addresses the challenge of detecting and mitigating dialogue breakdowns within LLM-driven systems.<n>We propose an approach that combines specialized fine-tuning with advanced prompting strategies.
- Score: 30.13634341221476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are rapidly changing various domains. However, their capabilities in handling conversational breakdowns still require an in-depth exploration. This paper addresses the challenge of detecting and mitigating dialogue breakdowns within LLM-driven conversational systems. While powerful models from OpenAI and Anthropic excel in many dialogue tasks, they can still produce incoherent or contradictory responses, commonly referred to as breakdowns, which undermine user trust. To tackle this, we propose an approach that combines specialized fine-tuning with advanced prompting strategies, including few-shot learning, chain-of-thought reasoning, and analogical prompting. In particular, we fine-tune a small 8B model and demonstrate its robust classification and calibration capabilities in English and Japanese dialogue. We also validate its generalization on the BETOLD dataset, achieving a 7\% accuracy improvement over its base model. Furthermore, we introduce a real-time deployment architecture that selectively escalates suspicious responses to more resource-intensive frontier models only when breakdowns are detected, significantly cutting operational expenses and energy consumption. Experimental results show our method surpasses prior state-of-the-art specialized classifiers while also narrowing performance gaps between smaller open-source models and large proprietary ones. Our approach offers a scalable solution for robust conversational AI in high-impact domains by combining efficiency, interpretability, and reliability.
Related papers
- Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge [0.0]
Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents.
Recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses.
This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation.
arXiv Detail & Related papers (2025-04-10T16:00:59Z) - Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information [28.634126758365976]
This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations.<n>We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology.
arXiv Detail & Related papers (2025-03-22T12:34:15Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.
It reformulates harmful queries into benign reasoning tasks.
We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate [24.92465108034783]
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually.
The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents.
We evaluate the behavior of a network of models collaborating through debate under the influence of an adversary.
arXiv Detail & Related papers (2024-06-20T20:09:37Z) - Multimodal Contextual Dialogue Breakdown Detection for Conversational AI Models [1.4199474167684119]
We introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model.
This model significantly outperforms other known best models by achieving an F1 of 69.27.
arXiv Detail & Related papers (2024-04-11T23:09:18Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-regressive Selective Replacement Ascent (ASRA) is a discrete optimization algorithm that selects prompts based on both quality and similarity with determinantal point process (DPP)
Experimental results on six different pre-trained language models demonstrate the efficacy of ASRA for eliciting toxic content.
arXiv Detail & Related papers (2024-03-01T05:28:06Z) - Evaluating Language Model Agency through Negotiations [39.87262815823634]
Negotiation games enable us to study multi-turn, and cross-model interactions, modulate complexity, and side-step accidental evaluation data leakage.
We use our approach to test six widely used and publicly accessible LMs, evaluating performance and alignment in both self-play and cross-play settings.
arXiv Detail & Related papers (2024-01-09T13:19:37Z) - Fast and Accurate Factual Inconsistency Detection Over Long Documents [19.86348214462828]
We introduce SCALE, a task-agnostic model for detecting factual inconsistencies using a novel chunking strategy.
This approach achieves state-of-the-art performance in factual inconsistency detection for diverse tasks and long inputs.
We have released our code and data publicly to GitHub.
arXiv Detail & Related papers (2023-10-19T22:55:39Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - Low-Resource Knowledge-Grounded Dialogue Generation [74.09352261943913]
We consider knowledge-grounded dialogue generation under a natural assumption that only limited training examples are available.
We devise a disentangled response decoder in order to isolate parameters that depend on knowledge-grounded dialogues from the entire generation model.
With only 1/8 training data, our model can achieve the state-of-the-art performance and generalize well on out-of-domain knowledge.
arXiv Detail & Related papers (2020-02-24T16:20:32Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.