REED-VAE: RE-Encode Decode Training for Iterative Image Editing with Diffusion Models
- URL: http://arxiv.org/abs/2504.18989v1
- Date: Sat, 26 Apr 2025 18:26:54 GMT
- Title: REED-VAE: RE-Encode Decode Training for Iterative Image Editing with Diffusion Models
- Authors: Gal Almog, Ariel Shamir, Ohad Fried,
- Abstract summary: latent diffusion models achieve impressive image editing results, but their application to iterative editing of the same image is severely restricted.<n>We present a RE-encode decode (REED) training scheme for variational autoencoders (VAEs)<n>We show how REED-VAE enhances the overall editability of images, increasing the likelihood of successful and precise edit operations.
- Score: 21.889238871432553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While latent diffusion models achieve impressive image editing results, their application to iterative editing of the same image is severely restricted. When trying to apply consecutive edit operations using current models, they accumulate artifacts and noise due to repeated transitions between pixel and latent spaces. Some methods have attempted to address this limitation by performing the entire edit chain within the latent space, sacrificing flexibility by supporting only a limited, predetermined set of diffusion editing operations. We present a RE-encode decode (REED) training scheme for variational autoencoders (VAEs), which promotes image quality preservation even after many iterations. Our work enables multi-method iterative image editing: users can perform a variety of iterative edit operations, with each operation building on the output of the previous one using both diffusion-based operations and conventional editing techniques. We demonstrate the advantage of REED-VAE across a range of image editing scenarios, including text-based and mask-based editing frameworks. In addition, we show how REED-VAE enhances the overall editability of images, increasing the likelihood of successful and precise edit operations. We hope that this work will serve as a benchmark for the newly introduced task of multi-method image editing. Our code and models will be available at https://github.com/galmog/REED-VAE
Related papers
- Concept Lancet: Image Editing with Compositional Representation Transplant [58.9421919837084]
Concept Lancet is a zero-shot plug-and-play framework for principled representation manipulation in image editing.<n>We decompose the source input in the latent (text embedding or diffusion score) space as a sparse linear combination of the representations of the collected visual concepts.<n>We perform a customized concept transplant process to impose the corresponding editing direction.
arXiv Detail & Related papers (2025-04-03T17:59:58Z) - ReEdit: Multimodal Exemplar-Based Image Editing with Diffusion Models [11.830273909934688]
Modern Text-to-Image (T2I) Diffusion models have revolutionized image editing by enabling the generation of high-quality images.
We propose ReEdit, a modular and efficient end-to-end framework that captures edits in both text and image modalities.
Our results demonstrate that ReEdit consistently outperforms contemporary approaches both qualitatively and quantitatively.
arXiv Detail & Related papers (2024-11-06T15:19:24Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years.
We propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing.
Our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks.
arXiv Detail & Related papers (2024-02-04T18:50:29Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - InFusion: Inject and Attention Fusion for Multi Concept Zero-Shot
Text-based Video Editing [27.661609140918916]
InFusion is a framework for zero-shot text-based video editing.
It supports editing of multiple concepts with pixel-level control over diverse concepts mentioned in the editing prompt.
Our framework is a low-cost alternative to one-shot tuned models for editing since it does not require training.
arXiv Detail & Related papers (2023-07-22T17:05:47Z) - SpaceEdit: Learning a Unified Editing Space for Open-Domain Image
Editing [94.31103255204933]
We propose a unified model for open-domain image editing focusing on color and tone adjustment of open-domain images.
Our model learns a unified editing space that is more semantic, intuitive, and easy to manipulate.
We show that by inverting image pairs into latent codes of the learned editing space, our model can be leveraged for various downstream editing tasks.
arXiv Detail & Related papers (2021-11-30T23:53:32Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.