The symplectic rank of non-Gaussian quantum states
- URL: http://arxiv.org/abs/2504.19319v1
- Date: Sun, 27 Apr 2025 18:00:31 GMT
- Title: The symplectic rank of non-Gaussian quantum states
- Authors: Francesco Anna Mele, Salvatore Francesco Emanuele Oliviero, Varun Upreti, Ulysse Chabaud,
- Abstract summary: Non-Gaussianity is a key resource for achieving quantum advantages in bosonic platforms.<n>Here, we investigate the symplectic rank: a novel non-Gaussianity monotone that satisfies remarkable operational and resource-theoretic properties.<n>We show that the symplectic rank is a robust non-Gaussian measure, explaining how to witness it in experiments and how to exploit it to meaningfully benchmark different bosonic platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Gaussianity is a key resource for achieving quantum advantages in bosonic platforms. Here, we investigate the symplectic rank: a novel non-Gaussianity monotone that satisfies remarkable operational and resource-theoretic properties. Mathematically, the symplectic rank of a pure state is the number of symplectic eigenvalues of the covariance matrix that are strictly larger than the ones of the vacuum. Operationally, it (i) is easy to compute, (ii) emerges as the smallest number of modes onto which all the non-Gaussianity can be compressed via Gaussian unitaries, (iii) lower bounds the non-Gaussian gate complexity of state preparation independently of the gate set, (iv) governs the sample complexity of quantum tomography, and (v) bounds the computational complexity of bosonic circuits. Crucially, the symplectic rank is non-increasing under post-selected Gaussian operations, leading to strictly stronger no-go theorems for Gaussian conversion than those previously known. Remarkably, this allows us to show that the resource theory of non-Gaussianity is irreversible under exact Gaussian operations. Finally, we show that the symplectic rank is a robust non-Gaussian measure, explaining how to witness it in experiments and how to exploit it to meaningfully benchmark different bosonic platforms. In doing so, we derive lower bounds on the trace distance (resp. total variation distance) between arbitrary states (resp. classical probability distributions) in terms of the norm distance between their covariance matrices, which may be of independent interest.
Related papers
- Classical simulation and quantum resource theory of non-Gaussian optics [1.3124513975412255]
We propose efficient algorithms for simulating Gaussian unitaries and measurements applied to non-Gaussian initial states.
From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decomposition for states relevant to continuous-variable quantum computing.
arXiv Detail & Related papers (2024-04-10T15:53:41Z) - Matched entanglement witness criteria for continuous variables [11.480994804659908]
We use quantum entanglement witnesses derived from Gaussian operators to study the separable criteria of continuous variable states.
This opens a way for precise detection of non-Gaussian entanglement.
arXiv Detail & Related papers (2022-08-26T03:45:00Z) - Non-perturbative simple-generated interactions with a quantum field for
arbitrary Gaussian states [0.0]
We extend the relativistic quantum channel associated to non-perturbative models to include a very large class of Gaussian states of the quantum field.
We show that all physical results involving the non-vacuum Gaussian states can be rephrased in terms of interaction with the vacuum state.
In these non-perturbative models it is possible to perform exact computation of the R'enyi entropy.
arXiv Detail & Related papers (2022-07-03T22:55:31Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - The Complexity of Bipartite Gaussian Boson Sampling [0.0]
We show that under the standard Anti-Concentration and Permanent-of-Gaussians conjectures, there is no efficient algorithm to sample from ideal GBS unless the hierarchy collapses.
We also make progress towards the goal of proving hardness in the regime where there are fewer than quadratically more modes than photons.
arXiv Detail & Related papers (2021-10-13T18:08:37Z) - Dissipative evolution of quantum Gaussian states [68.8204255655161]
We derive a new model of dissipative time evolution based on unitary Lindblad operators.
As we demonstrate, the considered evolution proves useful both as a description for random scattering and as a tool in dissipator engineering.
arXiv Detail & Related papers (2021-05-26T16:03:34Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.