Scalable Substructure Discovery Algorithm For Homogeneous Multilayer Networks
- URL: http://arxiv.org/abs/2504.19328v1
- Date: Sun, 27 Apr 2025 18:58:32 GMT
- Title: Scalable Substructure Discovery Algorithm For Homogeneous Multilayer Networks
- Authors: Arshdeep Singh, Abhishek Santra, Sharma Chakravarthy,
- Abstract summary: Graph mining analyzes real-world graphs to find core substructures (connected subgraphs) in applications modeled as graphs.<n>Substructure discovery is a process that involves identifying meaningful patterns, structures, or components within a large data set.<n>This paper focuses on substructure discovery in homogeneous multilayer networks (one type of MLN) using a novel decoupling-based approach.
- Score: 2.941253902145271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph mining analyzes real-world graphs to find core substructures (connected subgraphs) in applications modeled as graphs. Substructure discovery is a process that involves identifying meaningful patterns, structures, or components within a large data set. These substructures can be of various types, such as frequent patterns, motifs, or other relevant features within the data. To model complex data sets -- with multiple types of entities and relationships -- multilayer networks (or MLNs) have been shown to be more effective as compared to simple and attributed graphs. Analysis algorithms on MLNs using the decoupling approach have been shown to be both efficient and accurate. Hence, this paper focuses on substructure discovery in homogeneous multilayer networks (one type of MLN) using a novel decoupling-based approach. In this approach, each layer is processed independently, and then the results from two or more layers are composed to identify substructures in the entire MLN. The algorithm is designed and implemented, including the composition part, using one of the distributed processing frameworks (the Map/Reduce paradigm) to provide scalability. After establishing the correctness, we analyze the speedup and response time of the proposed algorithm and approach through extensive experimental analysis on large synthetic and real-world data sets with diverse graph characteristics.
Related papers
- Persistent Homology-induced Graph Ensembles for Time Series Regressions [1.5728609542259502]
We create an ensemble of Graph Neural Networks based on Persistent Homology filtration.<n>The ensemble aggregates the signals from the individual learners via an attention-based routing mechanism.<n>Four different real-world experiments on seismic activity prediction and traffic forecasting demonstrate that our approach consistently outperforms single-graph baselines.
arXiv Detail & Related papers (2025-03-18T13:22:52Z) - From Primes to Paths: Enabling Fast Multi-Relational Graph Analysis [5.008498268411793]
Multi-relational networks capture intricate relationships in data and have diverse applications across fields such as biomedical, financial, and social sciences.
This work extends the Prime Adjacency Matrices framework, which employs prime numbers to represent distinct relations within a network uniquely.
arXiv Detail & Related papers (2024-11-17T18:43:01Z) - ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models.
We present a simple fix to this problem by constructing processes that fully exploit the structures, hence the name ComboStoc.
arXiv Detail & Related papers (2024-05-22T15:23:10Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - Enhancing Deep Learning Models through Tensorization: A Comprehensive
Survey and Framework [0.0]
This paper explores the steps involved in multidimensional data sources, various multiway analysis methods employed, and the benefits of these approaches.
A small example of Blind Source Separation (BSS) is presented comparing 2-dimensional algorithms and a multiway algorithm in Python.
Results indicate that multiway analysis is more expressive.
arXiv Detail & Related papers (2023-09-05T17:56:22Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations.
We present a novel semi-supervised approach for structure-aware representation learning on multiplex networks.
arXiv Detail & Related papers (2021-10-05T13:37:43Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
In this paper, we focus on high-dimensional data that are organized into several hierarchical datasets.
The main novelty in this work lies in the combination of two powerful data-analytic approaches: topological data analysis and geometric manifold learning.
We show that our new method gives rise to superior classification results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-04-03T13:02:00Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.