Geometry-Informed Neural Operator Transformer
- URL: http://arxiv.org/abs/2504.19452v2
- Date: Tue, 29 Apr 2025 15:30:04 GMT
- Title: Geometry-Informed Neural Operator Transformer
- Authors: Qibang Liu, Vincient Zhong, Hadi Meidani, Diab Abueidda, Seid Koric, Philippe Geubelle,
- Abstract summary: This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions for arbitrary geometries.<n>The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
- Score: 0.8906214436849201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learning-based surrogate models offer significant computational efficiency and faster simulations compared to traditional numerical methods, especially for problems requiring repeated evaluations of partial differential equations. This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions for arbitrary geometries. GINOT encodes the surface points cloud of a geometry using a sampling and grouping mechanism combined with an attention mechanism, ensuring invariance to point order and padding while maintaining robustness to variations in point density. The geometry information is seamlessly integrated with query points in the solution decoder through the attention mechanism. The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
Related papers
- Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations [0.0]
We introduce enf2enf, an encoder--decoder methodology for predicting steady-state Partial Differential Equations.<n>Our method supports real time inference and zero-shot super-resolution, enabling efficient training on low-resolution meshes.
arXiv Detail & Related papers (2025-04-24T08:30:32Z) - Differentiable Topology Estimating from Curvatures for 3D Shapes [5.122262236258208]
This paper introduces a novel, differentiable algorithm tailored to accurately estimate the global topology of 3D shapes.<n>It ensures high accuracy, efficiency, and instant computation with GPU compatibility.<n> Experimental results demonstrate the method's superior performance across various datasets.
arXiv Detail & Related papers (2024-11-28T17:14:35Z) - A Recipe for Geometry-Aware 3D Mesh Transformers [2.0992612407358293]
We study an approach for embedding features at the patch level, accommodating patches with variable node counts.
Our research highlights critical insights: 1) the importance of structural and positional embeddings facilitated by heat diffusion in general 3D mesh transformers; 2) the effectiveness of novel components such as geodesic masking and feature interaction via cross-attention in enhancing learning; and 3) the superior performance and efficiency of our proposed methods in challenging segmentation and classification tasks.
arXiv Detail & Related papers (2024-10-31T19:13:31Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems.
The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-parametric Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2024-06-03T08:51:25Z) - Transolver: A Fast Transformer Solver for PDEs on General Geometries [66.82060415622871]
We present Transolver, which learns intrinsic physical states hidden behind discretized geometries.
By calculating attention to physics-aware tokens encoded from slices, Transovler can effectively capture intricate physical correlations.
Transolver achieves consistent state-of-the-art with 22% relative gain across six standard benchmarks and also excels in large-scale industrial simulations.
arXiv Detail & Related papers (2024-02-04T06:37:38Z) - GTA: A Geometry-Aware Attention Mechanism for Multi-View Transformers [63.41460219156508]
We argue that existing positional encoding schemes are suboptimal for 3D vision tasks.
We propose a geometry-aware attention mechanism that encodes the geometric structure of tokens as relative transformation.
We show that our attention, called Geometric Transform Attention (GTA), improves learning efficiency and performance of state-of-the-art transformer-based NVS models.
arXiv Detail & Related papers (2023-10-16T13:16:09Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.