Neural network task specialization via domain constraining
- URL: http://arxiv.org/abs/2504.19592v1
- Date: Mon, 28 Apr 2025 08:57:01 GMT
- Title: Neural network task specialization via domain constraining
- Authors: Roman Malashin, Daniil Ilyukhin,
- Abstract summary: This paper introduces a concept of neural network specialization via task-specific domain constraining.<n>The study presents experiments on training specialists for image classification and object detection tasks.<n>The proposed methods can help improve system performance in scenarios where certain data domains should be excluded from consideration of the generalist network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a concept of neural network specialization via task-specific domain constraining, aimed at enhancing network performance on data subspace in which the network operates. The study presents experiments on training specialists for image classification and object detection tasks. The results demonstrate that specialization can enhance a generalist's accuracy even without additional data or changing training regimes: solely by constraining class label space in which the network performs. Theoretical and experimental analyses indicate that effective specialization requires modifying traditional fine-tuning methods and constraining data space to semantically coherent subsets. The specialist extraction phase before tuning the network is proposed for maximal performance gains. We also provide analysis of the evolution of the feature space during specialization. This study paves way to future research for developing more advanced dynamically configurable image analysis systems, where computations depend on the specific input. Additionally, the proposed methods can help improve system performance in scenarios where certain data domains should be excluded from consideration of the generalist network.
Related papers
- Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
Deep operator network (DeepNet) has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications.
We introduce a random sampling technique to be adopted the training of DeepONet, aimed at improving generalization ability of the model, while significantly reducing computational time.
Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
We propose an objective derived by formulating continual learning as sequential function-space variational inference.
Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions.
We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods.
arXiv Detail & Related papers (2023-12-28T18:44:32Z) - TANGOS: Regularizing Tabular Neural Networks through Gradient
Orthogonalization and Specialization [69.80141512683254]
We introduce Tabular Neural Gradient Orthogonalization and gradient (TANGOS)
TANGOS is a novel framework for regularization in the tabular setting built on latent unit attributions.
We demonstrate that our approach can lead to improved out-of-sample generalization performance, outperforming other popular regularization methods.
arXiv Detail & Related papers (2023-03-09T18:57:13Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection.
The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density.
arXiv Detail & Related papers (2022-06-04T03:17:15Z) - Network Generalization Prediction for Safety Critical Tasks in Novel
Operating Domains [0.0]
We propose the task Network Generalization Prediction: predicting the expected network performance in novel operating domains.
We describe the network performance in terms of an interpretable Context Subspace, and we propose a methodology for selecting the features of the Context Subspace that provide the most information about the network performance.
arXiv Detail & Related papers (2021-08-17T01:55:54Z) - Topological Uncertainty: Monitoring trained neural networks through
persistence of activation graphs [0.9786690381850356]
In industrial applications, data coming from an open-world setting might widely differ from the benchmark datasets on which a network was trained.
We develop a method to monitor trained neural networks based on the topological properties of their activation graphs.
arXiv Detail & Related papers (2021-05-07T14:16:03Z) - Explainability-aided Domain Generalization for Image Classification [0.0]
We show that applying methods and architectures from the explainability literature can achieve state-of-the-art performance for the challenging task of domain generalization.
We develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features.
Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.
arXiv Detail & Related papers (2021-04-05T02:27:01Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.