Hierarchical Uncertainty-Aware Graph Neural Network
- URL: http://arxiv.org/abs/2504.19820v1
- Date: Mon, 28 Apr 2025 14:22:18 GMT
- Title: Hierarchical Uncertainty-Aware Graph Neural Network
- Authors: Yoonhyuk Choi, Chong-Kwon Kim,
- Abstract summary: We introduce the Hierarchical Uncertainty-Aware Graph Neural Network (HU-GNN), which unifies multi-scale representation learning, principled uncertainty estimation, and self-supervised embedding diversity within a single end-to-end framework.<n>Specifically, HU-GNN adaptively forms node clusters and estimates uncertainty at multiple structural scales from individual nodes to higher levels.
- Score: 1.7495213911983414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research on graph neural networks (GNNs) has explored mechanisms for capturing local uncertainty and exploiting graph hierarchies to mitigate data sparsity and leverage structural properties. However, the synergistic integration of these two approaches remains underexplored. In this work, we introduce a novel architecture, the Hierarchical Uncertainty-Aware Graph Neural Network (HU-GNN), which unifies multi-scale representation learning, principled uncertainty estimation, and self-supervised embedding diversity within a single end-to-end framework. Specifically, HU-GNN adaptively forms node clusters and estimates uncertainty at multiple structural scales from individual nodes to higher levels. These uncertainty estimates guide a robust message-passing mechanism and attention weighting, effectively mitigating noise and adversarial perturbations while preserving predictive accuracy on both node- and graph-level tasks. We also offer key theoretical contributions, including a probabilistic formulation, rigorous uncertainty-calibration guarantees, and formal robustness bounds. Finally, by incorporating recent advances in graph contrastive learning, HU-GNN maintains diverse, structurally faithful embeddings. Extensive experiments on standard benchmarks demonstrate that our model achieves state-of-the-art robustness and interpretability.
Related papers
- On the Relationship Between Robustness and Expressivity of Graph Neural Networks [7.161966906570077]
Graph Neural Networks (GNNs) are vulnerable to bit-flip attacks (BFAs)
We introduce an analytical framework to study the influence of architectural features, graph properties, and their interaction.
We derive theoretical bounds for the number of bit flips required to degrade GNN expressivity on a dataset.
arXiv Detail & Related papers (2025-04-18T16:38:33Z) - Conditional Uncertainty Quantification for Tensorized Topological Neural Networks [19.560300212956747]
Graph Neural Networks (GNNs) have become the de facto standard for analyzing graph-structured data.
Recent studies have raised concerns about the statistical reliability of uncertainty estimates produced by GNNs.
This paper introduces a novel technique for quantifying uncertainty in non-exchangeable graph-structured data.
arXiv Detail & Related papers (2024-10-20T01:03:40Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We introduce the Positional Graph Quantile Neural Network (PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Networks, and recalibration techniques in a fully nonparametric framework.
Experiments on benchmark datasets demonstrate that PE-GQNN significantly outperforms existing state-of-the-art methods in both predictive accuracy and uncertainty quantification.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - xAI-Drop: Don't Use What You Cannot Explain [23.33477769275026]
Graph Neural Networks (GNNs) have emerged as the predominant paradigm for learning from graph-structured data.
GNNs face challenges such as lack of generalization and poor interpretability.
We introduce xAI-Drop, a novel topological-level dropping regularizer.
arXiv Detail & Related papers (2024-07-29T14:53:45Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.<n>However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.<n>This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.